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The aim of the paper is to study the renormalizations of the charge and screening length that appear in the
large-distance behavior of the effective pairwise interactionwaa8 between two chargesea andea8 in a dilute
electrolyte solution, both along a dielectric wall and in the bulk. The electrolyte is described by the so-called
primitive model in the framework of classical statistical mechanics and the electrostatic response of the wall is
characterized by its dielectric constant. In a previous paper[Phys. Rev. E68, 022133(2003)] a graphic
reorganization of resummed Mayer diagrammatics has been devised in order to exhibit the general structure of
the 1/y3 leading tail ofwaa8sx,x8 ,yd for two charges located at distancesx andx8 from the wall and separated
by a distancey along the wall. When all species have the same closest approach distanceb to the wall, the
coefficient of the 1/y3 tail is the productDasxdDa8sx8d of two effective dipoles. Here we use the same graphic
reorganization in order to systematically investigate the exponential large-distance behavior ofwaa8 in the
bulk. (We show that the reorganization also enables one to derive the basic screening rules in both cases.) Then,
in a regime of high dilution and weak coupling, the exact analytical corrections to the leading tail ofwaa8, both
in the bulk or along the wall, are calculated at first order in the coupling parameter« and in the limit whereb
becomes negligible with respect to the Debye screening length.(« is proportional to the so-called plasma
parameter.) The structure of corrections to the terms of order« is exhibited, and the scaling regime for the
validity of the Debye limit is specified. In the vicinity of the wall, we use the density profiles calculated
previously[J. Stat. Phys.105, 211(2001)] up to order« and a method devised[J. Stat. Phys.105, 245(2001)]
for the determination of the corresponding correction in the auxiliary screened potential, which also appears in
the linear-response theory. The first coupling correction to the effective dipoleDasxd is a function(not a mere
exponential decay) determined by the nonuniformity of the density profiles as well as by three- and four-body
screened interactions inwaa8. Though the effective screening length(beyond the Debye value) in the direction
perpendicular to the wall is the same as in the bulk, the bare solvated charges are not renormalized by the same
quantity as in the bulk, because of combined steric and electrostatic effects induced by the wall.
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I. INTRODUCTION

A. Issue at stake

The paper is devoted to the large-distance behavior of the
pairwise effective interaction between two charges in an
electrolyte solution, which is confined to the regionx.0 by
a plane impenetrable dielectric wall. The electrolyte solution
is described by the usualprimitive model[1] with ns species
of charges which interact via the Coulomb interaction. Every
charged particle of speciesa is represented as a hard
sphere—with diametersa—where the net bare solvated
chargeea;Zae is concentrated at the center of the sphere.
(e is the abolute value of the electron charge andZa may be

positive or negative.) The solvent is handled with as a con-
tinuous medium of uniform dielectric constantesolv. The wall
matter is characterized by a dielectric constanteWÞesolv, and
the latter difference results in an electrostatic response of the
wall to the moving charges in the electrolyte. Moreover, the
excluded-volume sphere of every particle is assumed to be
made of a material with the same dielectric constant as that
of the solvent.(Thereforee=esolv whenx.0 ande=ew when
x,0.) In the framework of statistical mechanics, the effec-
tive pairwise interactionwaa8sr ,r 8d between two chargesea

andea8 located at positionsr andr 8, respectively, is defined
from the pair correlation functionhaa8 by (see, e.g.,
Ref. [2])

1 + haa8 ; exps− bwaa8d, s1d

whereb=1/kBT is the inverse temperature, in whichkB is
the Boltzmann constant andT is the absolute temperature.
(waa8 is also called potential of mean force, whilehaa8 is
known as the Ursell function.) In the vicinity of the wall,
symmetries enforce thatwaa8sr ,r 8d=waa8sx,x8 ,yd, wherex
andx8 are the distances ofr andr 8 from the wall andy is the
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norm of the projectiony of r −r 8 onto the wall plane. Along
the wall, contrary to the bulk case,waa8sx,x8 ,yd does not
decay exponentially fast: its leading behavior at large dis-
tancesy takes a dipolar formfaa8sx,x8d /y3, as a result of the
deformation of screening clouds enforced by the presence of
the wall (see Ref.[3] for a review or, e.g., Ref.[4]).

An electrolyte solution can be considered as a dilute
charge fluid where the closest approach distance between the
center of a charge with speciesa and the dielectric wall takes
the same valueb for all species. The reason is that the dif-
ferences in the various ion diameters are negligible with re-
spect to all other characteristic lengths.(ba=b for all a’s,
whetherba is only determined by the radius of the excluded-
volume sphere of speciesa or ba involves some other more
complicated microscopic mechanism for the short-distance
repulsion from the wall. For instance, a layer of water mol-
ecules, with a thickness of molecular dimensions, may lie
between the wall and the electrolyte solution, as has been
suggested, for instance, for another situation, the mercury-
aqueous solution interface[5].) As a consequence, as shown
in Ref. [4], called paper I in the following, the coefficient
faa8sx,x8d of the 1/y3 tail of waa8sx,x8 ,yd is a product of
effective dipolesDasxd andDa8sx8d:

waa8sx,x8,yd ,
y→+`

DasxdDa8sx8d

y3 . s2d

[Therefore the tail ofwaasx,x8 ,yd between two particles of
the same speciesa is repulsive whenx=x8, as is the case for
identical point dipoles with the same direction.]

The general result(2) arises from a property about the
screened potentialf defined as follows.sdqdq8 /esolvdf is the
immersion free energy between twoinfinitesimal external
point chargesdq anddq8 calculated in the framework of the
linear-response theory as if the radii of the excluded-volume
spheres of the fluid charges were equal to zero[6]. [The
effect of hard cores is briefly discussed after Eq.(65).] As
shown in paper I, when all particles have the same closest
approach distanceb to the wall,

fsx,x8,yd ,
y→+`

D̄fsxdD̄fsx8d
y3 . s3d

[In Eq. (3), D̄fsxd vanishes forx,b.] In the following, a
quantity that is independent of charge speciesa is denoted
by an overlined letter when it is analogous to another one

that depends ona, as is the case forDasxd andD̄fsxd. Since
f obeys an “inhomogeneous” Debye equation where the ef-
fective screening length depends on the distancex from the

wall through the density profiles,D̄fsxd has the same sign at
any distancex from the wall, contrarily to the effective di-
pole Dasxd, the sign of which maya priori vary with dis-
tancex. Thus, the 1/y3 tail of fsx,x8 ,yd is repulsive at all
distancesx andx8 from the wall. Moreover, thex-dependent
screening length tends to the Debye lengthjD at large dis-

tances, andD̄fsxd can be rewritten, forx.b, as

D̄fsxd = −Î2eW

esolv

e−kDsx−bd

kD
f1 + Cf + Ḡf

expsxdg, s4d

whereḠf
expsxd tends to zero exponentially fast over a scale of

order 1/kD. In Gauss units, the Debye lengthjD reads

j D
−1 ; kD =Î4pbe2

esolv
o

a

Za
2ra

B, s5d

where ra
B is the bulk density of speciesa. Here Cf is a

constant which vanishes, as well asḠf
expsxd, in the infinite-

dilution and vanishing-coupling limit considered hereafter.
The global minus sign in Eq.(4) has been introduced, be-
cause, in the latter limit and in the case of a plain wallseW

=esolvd, D̄fsxd is expected to have the same sign as the dipole
dsxd carried by the set made of a positive unit charge and its
screening cloud repelled from the wall. The sign of 1+Cf

depends on the temperature, on the composition of the elec-
trolyte, on the value of the closest approach distanceb to the
wall, and on the dielectric constantseW andesolv.

In an electrolyte solution, theZa’s of all speciesa’s are of
unit order and the diameterssa’s of excluded-volume
spheres also have the same typical value, denoted bys.
Moreover, all densitiesra

B’s are of the same magnitude order.
Thus, if the solution is highly diluted, the Coulomb coupling
between charges of any species separated by the mean inter-
particle distancea is weak: the condition of low densities,
s /a!1, implies thatbe2/ sesolvad!1, if the temperature is
high enough forbe2/ sesolvsd to be far smaller than 1 or of
unit order. Detailed scaling regimes are given in Sec. I B. In
the corresponding limit, denoted by the superscript(0) here-
after, where the fluid is infinitely diluted and extremely
weakly coupled, the large-distance behaviorwaa8

as sr ,r 8d of
the effective pairwise interactionwaa8sr ,r 8d is the same as if
the chargesea and ea8 were infinitesimal external point
charges embedded in the infinitely diluted and vanishingly
coupled fluid:

waa8
ass0d =

e2

esolv
ZaZa8f

ass0d. s6d

Moreover, in this limit, the density profiles are uniform at

leading order andD̄f
s0dsxd is given by Eq.(4) where the con-

stant Cf and the function Ḡf
expsxd vanish: Cf

s0d=0 and

Ḡf
exps0dsxd=0 [7,8]. Then, by virtue of Eqs.(2) and (6),

Da
s0dsxd =

e
Îesolv

ZaD̄f
s0dsxd

with D̄f
s0dsxd = −Î2eW

esolv

e−kDsx−bd

kD
. s7d

As long as the dilution is high enough, the large-distance
behavior waa8

as sr ,r 8d of the effective pairwise interaction
waa8sr ,r 8d is expected to have the same functional form as
its expression w

aa8
ass0dsr ,r 8d in the infinite-dilution and

vanishing-coupling limit. This assuption is supported by two

J.-N. AQUA AND F. CORNU PHYSICAL REVIEW E70, 056117(2004)

056117-2



reasons. First, since densities are low, the functional form of
the large-distance behaviorwaa8

as sr ,r 8d is ruled by the effect
of long-range Coulomb interactions, whereas short-ranged
hard-core repulsions are only involved in the values of the
coefficients of this leading tail. Second, the leading Coulomb
effects are due to the large-distance nonintegrability of Cou-
lomb interaction, and the leading-order contribution from
any integral involving the Boltzman factor of either the ef-
fective interactionwaa8 or the bare Coulomb interaction
eaea8v is obtained by linearizing the latter exponential fac-
tors. This is the procedure that underlies the Debye-Hückel
approximation for bulk correlations, which was initially de-
rived as a linearized Poisson-Boltzmann theory, wherewaa8
is dealt with in a linear-response framework as if chargesea

and ea8 were infinitesimal external charges[1,9]. [In the
Mayer diagrammatic approach of Debye-Hückel theory, the
linearized Boltzmann factor is that of the bare potential and
one must also resum the infinite series of the most divergent
integrals that arise from this linearization(see, e.g.,
Ref. [2]).] The second reason amounts to state that leading
Coulomb effects are properly described in a linearized mean-
field scheme.

In other words, as long as the dilution and temperature are
high enough, inwaa8

as the many-body effects beyond the lin-
earized mean-field structure only result in the renormaliza-
tion of charges and of the screening length with respect to
their values in the infinite-dilution and vanishing-coupling
limit—namely, with respect to the bare solvated chargesZa’s
and the Debye screening lengthjD. For instance, in the
bulk, waa8

B assr ,r 8d behaves as the leading-order function

w
aa8
B ass0dsr ,r 8d given by the Debye-Hückel theory for point

charges, but bare chargesZa’s and the Debye lengthkD
−1 are

replaced by effective chargesZa
B eff’s and the screening

lengthkB
−1, respectively:

waa8
B sur − r 8ud ,

ur−r8u→+`

e2

esolv
Za

eff BZa8
eff Be−kBur−r8u

ur − r 8u
, s8d

where

Za
eff Bs0d = Za and kB

s0d = kD. s9d

(In the following, the superscript “B” signals all bulk quan-
tities.) In the present paper we show that the effective dipole
Dasxd in the large-distance pairwise interaction along a di-
electric wall takes the form

Dasxd = −Î2eW

esolv

e
Îesolv

Za
eff We−ksx−bd

k
f1 + Ga

expsxdg,

s10d

whereGa
expsxd is an exponentially decaying function which

tends to 0 whenx goes to infinity. At distances from the wall
larger than a few screening lengths,Dasxd takes the same
functional form asDa

s0dsxd, and many-body effects reduce to
the introduction of effective chargesZa

eff W and of a screening
lengthk−1.

On the other hand, in the bulk many-body effects upon
effective charges and the screening length arise only from

pair interactions between ions, whereas along the wall they
involve also the electrostatic potential and the geometric
constraint created by the wall. In order to investigate these
differences, we also determine the bulk pairwise interaction
waa8

B up to the same order in the coupling parameter as for
the pairwise interaction along the wall.

B. Main results

In the present paper we determinewaa8
B sur −r 8 u d, D̄fsxd,

and Dasxd up to first order in the dimensionless coupling
parameter

« ;
1

2
kD

be2

esolv
! 1. s11d

in regimes where«!1, ss /ad3!1 and kDb!1. Here «
~ sbe2/esolvad3/2 and Eq.(11) implies thatbe2/esolv!a!jD.
(Up to a factor of 1/2,« coincides with the so-called plasma
parameter of anelectron gas.) As shown in Sec. III, contribu-
tions from steric effects involvings /a are corrections of
higher order with respect to the terms of order« in some
scaling regimes of high dilution wheress /ad3!«. Moreover,
as shown in Sec. V C 3, the first corrections involvingkDb
appear only at order« lnskDbd. In the first scaling regime,
the density vanishes while the temperature is fixed; then,
be2/ sesolvsd andbe2/ sesolvbd are fixed—namely,

Ss

a
D3

~ «2 and kDb ~ « ! 1 regimes1d. s12d

In the second case, the density vanishes while the tempera-
ture goes to infinity, but not too fast in order to ensure that
ss /ad3!«; then, bothbe2/ sesolvsd and be2/ sesolvbd vanish.
These conditions can be summarized in the following way:

«2 ! Ss

a
D3

! « ! kDb ! 1 regimes2d. s13d

The expressions at leading order in« andkDb in regime(2)
can be obtained from those derived in regime(1) for a fixed
ratio s« /kDbd~be2/ sesolvbd by taking the limit where
be2/ sesolvbd goes to zero whilekDb is kept fixed.We notice
that, when the solvent is water, the Bjerrum lengthbe2/esolv
at room temperature is about 7 Å and, for concentrations
around 10−4 mol/ liter, « is of order 10−2 and ss /ad3 is of
order «2 for s,5 Å. For the sake of conciseness, both re-
gimes(1) and(2) will be referred to as the “weak-coupling ”
regime and we shall speak only in terms of« expansions.

Our exact analytical calculations are performed in the
framework of resummed Mayer diagrammatics introduced in
paper I. For the inverse screening length in the bulk we re-
trieve [10,11] that, up to order«,

kB = kDF1 + «SS3

S2
D2ln 3

4
+ os«dG , s14d

where
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Sm ; o
a=1

ns

ra
BZa

m. s15d

The leading corrections involved in the notationos«d are
given in Eq.(64). As announced above, only screening ef-
fects of the non-integrable long-range Coulomb interaction
are involved up to order«; the diameterssa’s of charges
appear only in higher-order terms. This property holds in the
bulk as well as in the vicinity of a wall(see, e.g., Ref.[12]).
More generally, the specific form of the short-distance steric
repulsion between charges does not appear in the leading
correction of order«. The correction of order« in the bulk
screening lengthkB

−1 vanishes in a charge symmetric electro-
lyte, where species with charge −Zae has the same density as
species with chargeZae (S3=0). If the fluid is not charge
symmetric, the screening lengthkB

−1 decreases when the cou-
pling strength increases.

Our main results are the following. First, we find that

Za
eff B = ZaH1 + «FZa

S3

S2

ln 3

2
+ SS3

S2
D2S1

6
−

ln 3

8
DG + os«dJ ,

s16d

wheres1/6d−s1/8dln 3.0. In the case of a one-component
plasma, formula(16) is reduced to that found in Ref.[10] by
diagrammatic techniques.[The expression given for a multi-
component electrolyte in Ref.[11] corresponds to another
definition of the effective charge and does not coincide with
our expression(16).] As in the case of the screening length,
there is no correction at order« if the composition of the
electolyte is charge symmetric. According to the diagram-
matic origin of this correction, the contribution toZa

eff B from
a screened interaction via one intermediate charge has the
sign of ZaS3 whereas the contribution toZa

eff B from a
screened interaction via two intermediate charges always in-
creases the effective charge. We notice that the existence of
the nonlinear termZa

2 in Za
eff B implies thatwaa8

as cannot be
written asZaca8 whereca8 would be the total electrostatic
potential created atr by the chargeZa8e at r 8 and its screen-
ing cloud in the electrolyte.ca8 does not exist beyond the
framework of linear-response theory.

Second, as expected, the screening length in the direction
perpendicular to the wall proves to be the same as in the
bulk, at least up to first order in«. Besides, the renormalized
chargeZa

eff W defined in Eq.(10) and the renormalized charge
Za

eff B in the bulk do not coincide. However, up to order«,
their ratio is independent of the speciesa:

Za
eff W = f1 + gs1d + os«dgZa

eff B, s17d

with

gs1d = Cf
s1dS be2

esolvb
, lnskDbd,DelD − «SS3

S2
D2FacsDeld

4
−

ln 3

8
G .

s18d

[We notice that the notationos«d in Eq. (17) contains both
contributions such as those in Eq.(64) and terms of order
«3kDb.] As exhibited by their diagrammatic origins, the
various terms ings1d arise both from the nonuniformity of the

density profiles and from screened interactions via two inter-
mediate charges. These profiles, which have been calculated
explicitly in the limit of vanishingkDb in Ref. [13], result
from the competition between, on the one hand, the screened
self-energy arising both from the electrostatic response of the
wall and its steric deformation of screening clouds, and, on
the other hand, the profile of the electrostatic potential drop
which these two effects induce in the electrolyte. More pre-
cisely, Cf

s1d written in Eq. (146) is the first-order renormal-

ization of the amplitude ofD̄fsxd [see Eq.(4)], which origi-
nates from the nonuniformity of the density profiles.[The
screened potentialf appears as an auxiliary object in the
resummed Mayer diagrammatics, and the expressions ofCf

s1d

and Ḡf
exps1dsx,x8d are calculated in Sec. V.] Cf

s1d and its sign
depend on the composition of the electrolyte, on the closest
approach distanceb to the wall[through the parameterskDb
andbe2/ sesolvbd], and on the parameterDel, which charater-
izes the difference between the dielectric permittivity of the
wall and that of the solvent:

Del ;
eW − esolv

eW + esolv
. s19d

The second term on the right-hand side(RHS) of Eq. (18)
originates from the renormalization of the screening length
and from the difference in the contributions from four-body
effective interactions in the bulk and along the wall. The
three-body effective interactions do not contribute to
gs1d—so thatgs1d is independent of the speciesa—because
they give the same corrections to the amplitudes ofwaa8

B and
waa8. The constantacsDeld is written in Eq. (169). If
esolv.eW, as is the case when the solvent is water and the
wall is made of glass,acsDeld. s1/2dln 3 and the second
term decreases the ratioZa

eff W/Za
eff B. We notice that

Ga
exps1dsxd at first order in« is given in Sec. VI D. Contrarily

to Da
s0dsxd, the sign ofDa

s1dsxd may vary with the distancex,
and it depends on the composition of the electrolyte, on the
closest approach distance to the wallb, and on the ratio
between the dielectric constant of the wall and that of the
solvent.

C. Contents

The paper is organized as follows. The large-distance be-
haviors of the effective pairwise interactionswaa8, in the
bulk or along the wall, are investigated through the large-
distance decay of the Ursell functionhaa8 according to rela-
tion (1). The latter decay is conveniently studied from Mayer
diagrammatics generalized to inhomogeneous situations. In
Sec. II we recall the resummed Mayer diagrammatics intro-
duced in paper I in order to systematically handle with the
large-distance nonintegrability of the bare Coulomb potential
(far away or near the wall). There appears a screened poten-
tial f, which coincides with the interaction defined from the
immersion free energy between two infinitesimal external
point charges(see Sec. II B). In the bulk,f is a solution of
the usual Debye equation. Near the wallf obeys an inhomo-
geneous Debye equation, where the inverse screening length
depends onx. In Sec. II C a decomposition ofhaa8 into four
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contributions enables one to show how the basic internal-
and external-screening sum rules arise in resummed Mayer
diagrammatics and how they are preserved if only some sub-
class of diagrams is retained. It also allows one to show that,
for a symmetric electrolyte,oa rasr dhaa8sr ,r 8d decays faster
thanhaa8sr ,r 8d (see Secs. IV E and VI B). We also recall the
graphic reorganization of diagrams devised in paper I for the
study of the general structure of large-distance tails in dilute
regimes.

Systematic double expansions in the dimensionless pa-
rameterss /a and « can be performed from resummed dia-
grams. In Sec. III we exhibit the nature of the first various
contributions. This leads us to introduce the scaling regimes
(12) and (13) where the correction proportional to the cou-
pling parameter« is the leading contribution.(We also recall
the expression of the pair correlation at any distance at lead-
ing order in«.)

Section IV is devoted to bulk correlations. We take advan-
tage of the full translational invariance in the bulk in order to
resum the four geometric series which appear in the Fourier
transform of the graphic decomposition ofhaa8

B recalled in
Sec. II C. Thus, we obtain a compact formula for the large-
distance behavior ofhaa8

B , where the contributions of both
charges are factorized. This formula is appropriate to obtain
systematic« expansions of the screening length and of the
renormalized charge from the« expansions of resummed
diagrams.

In Sec. IV D, we also show how to retrieve the corre-
sponding corrections of order« by a more cumbersome
method which will be useful for the calculations in the vi-
cinity of a wall, where the translational invariance is lost in
the direction perpendicular to the wall. In position space ev-
ery convolution in the graphic representation ofhaa8

B decays
exponentially over the Debye screening lengthkD

−1 at large
relative distancesr, with an amplitude which is proportional
to 1/r times a polynomial inr. The resummation of the se-
ries of the leading tails inr at every order in« must be
performed in order to get the exponential decay over the
screening lengthkB

−1 calculated up to order« (see Appendix
B). On the contrary, the correction of order« in the renor-
malized charge can be retrieved from only a finite number of
resummed Mayer diagrams.

In Sec. V we recall how the screened potentialfsx,x8 ,yd
and the effective dipoleD̄fsxd in its large-y tail are formally
expressed in terms of the density profiles in the vicinity of

the wall [4]. Then, the« expansion ofD̄fsxd can be per-
formed from the« expansion of the density profiles, by ap-
plying the method devised in Ref.[12]. The density profiles,
which vary rapidly over the Bjerrum lengthbe2/esolv in the
vicinity of a dielectric wall, have been explicitly determined
up to order« in the limit wherekDb vanishes in Ref.[13],
and we explicitly calculateD̄fsxd up to order« in the same
limit.

In Sec. VI we recall how the structure of the effective
dipoleDasxd in the 1/y3 tail of haa8sx,x8 ,yd is given in terms
of the graphic representation written in Sec. II C. We also
derive a sum rule foroaearasxdDasxd. By using the resum-
mation method checked for the bulk situation in Sec. IV D,

we determine the renormalized value of the screening length
in the direction perpendicular to the wall at first order in«.
For that purpose, in Appendix D we show that the
leading term in x at every order«q is proportional to
sx−bdqexpf−kDsx−bdg, and we resum the series of these
leading terms. Thus, we check that the correction of order«
in the screening length is indeed the same in the bulk and in
the direction perpendicular to the wall. Then,Dasxd is deter-
mined up to order« by only two resummed Mayer diagrams.
Explicit calculations are performed in the limit wherekDb
vanishes and the expressions ofZa

eff B and Za
eff W are com-

pared. Their physical interpretation is given thanks to the
diagrammatic origins of the various contributions.

II. GENERAL FORMALISM

A. Model

In the primitive model defined above, the hard-core effect
between two speciesa anda8 can be taken into account in
the pair energy by an interactionvSR which is infinitely re-
pulsive at distances shorter than the sumssa+sa8d /2 of the
sphere radii of both species. Its Boltzmann factor reads

expf− bvSRsur − r 8u;a,a8dg =H0 if ur − r 8u , ssa + sa8d/2,

1 if ur − r 8u . ssa + sa8d/2.

s20d

Since charges are reduced to points at the centers of
excluded-volume spheres with the same dielectric constant
as the solvent, the Coulomb interaction between two charges
can be written in the whole space(even forx,0 or x8,0)
as sZaZa8e

2/esolvdvsr ,r 8d, where vsr ,r 8d is the solution of
Poisson equation for unit point charges with the adequate
electrostatic boundary conditions. Since the half-spacex,0
is occupied by a material with a dielectric constanteW,
vsr ,r 8d in Gauss units reads, forx.0 andx8.0 and for any
ur −r 8 u .0 [14],

vsr ,r 8d =
1

ur − r 8u
− Del

1

ur − r 8!u
. s21d

Del, defined in Eq.(19), lies between −1 and 1, andr 8! is the
image of the positionr 8 with respect to the plane interface
between the solution and dielectric material. In the bulk the
Coulomb potential reads

vBsur − r 8ud =
1

ur − r 8u
. s22d

The total pair energyUpair is

Upair =
1

2o
iÞ j

vSRsur i − r ju;ai,a jd +
1

2o
iÞ j

e2

esolv
Zai

Za j
vsr i,r jd,

s23d

wherei is the index of a particle.
In the vicinity of the wall, one-body potentials appear in

the total energy of the system. For every charge a self-energy
Za

2se2/esolvdVself arises from the work necessary to bring a
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chargeZae from x= +` (in the solvent) to a pointr in the
vicinity of the wall. According to Eq.(21), the wall electro-
static response is equivalent to the presence of an image
charge −DelZae at pointr ! inside a wall that would have the
same dielectric constantesolv as the solvent and

Vselfsxd = − Del
1

4x
. s24d

In the case of a glass wall in contact with water, the relative
dielectric constanteW/esolv of the wall with respect to the
solvent is of orders1/80d,1, Del defined in Eq.(19) is
negative, andVself is a repulsive potential. The impenetrabil-
ity of the wall corresponds to a short-ranged potentialVSRsxd,
the Boltzmann factor of which is

expf− bVSRsxdg = H0 if x , b,

1 if x . b,
s25d

whereb is the closest approach distance to the wall for the
centers of spherical particles, which is the same for all spe-
cies. The confinement of all particles to the positive-x region
and the electrostatic self-energy may be gathered in a one-
body potentialVwall:

Vwall = o
i

VSRsxi ;aid + o
i

e2

esolv
Zai

2 Vselfsxid. s26d

B. Generalized resummed Mayer diagrams

By virtue of definition(1), the leading large-distance be-
havior waa8

as of waa8 is proportional to the large-distance be-
havior haa8

as of haa8,

haa8
as = − bwaa8

as , s27d

because any powerfwaa8
as gn, with nù2, has a faster decay

than waa8
as . In an inhomogeneous situationhaa8

as is conve-
niently studied by means of the Mayer diagrammatic repre-
sentation ofhaa8. However, the large-distance behavior of
the Coulomb pair interactionvsr ,r 8d is not integrable, and
every integral corresponding to a standard Mayer diagram
that is not sufficiently connected diverges when the volume
of the region occupied by the fluid becomes infinite.

As shown in paper I, thanks to a generalization of the
procedure introduced by Meeron[15] in order to calculate
haa8 in the bulk, the density expansion ofhaa8 in the vicinity
of the wall can be expressed in terms of resummed Mayer
diagrams with integrable bondsF. Since the procedure for
the systematic resummation of Coulomb divergences relies
on topological considerations, the definitions of Mayer dia-
grams with resummed bonds are formally the same ones in
the bulk or near the wall. The two differences between re-
summed diagrams in the bulk and near the wall are the fol-
lowing. First, near the wall the point weights are not constant
densities but x-dependent density profiles. Second, the
screened potentialf arising from collective effects described
by the systematic resummation of Coulomb divergences is
no longer the Debye potential, but it obeys an “inhomoge-
neous” Debye equation

Drfsr ,r 8d − k̄2sxdfsr ,r 8d = − 4pdsr − r 8d. s28d

In Eq. (28), k̄2sxd is defined as

k̄2sxd ; 4pb
e2

esolv
o

a

Za
2rasxd, s29d

where all densitiesrasxd’s vanish forx,b. Heref obeys the
same boundary conditions as the Coulomb potentialv:
fsr ,r 8d is continuous everywhere and tends to 0 whenur
−r 8u goes to +̀ , while its gradient times the dielectric con-
stant is continuous at the interface with dielectric walls. We
recall that particles are supposed to be made of a material
with the same dielectric constant as the solvent.

The two resummed bondsF, called Fcc and FR, respec-
tively, are written in terms of the screened potentialf as

Fccsn,md = −
be2

esolv
Zan

Zam
fsr n,r md s30d

and

FRsn,md = expF− bvSRsur n − r mud −
be2

esolv
Zan

Zam
fsr n,r mdG − 1

+
be2

esolv
Zan

Zam
fsr n,r md, s31d

wheren andm are point indices in the Mayer diagrams.[In
the bond notation, the superscript “cc” stands for “charge-
charge” and “R” means “resummed.” Indeed,Fcc is propor-
tional to the resummed interactionfsr ,r 8d between point
charges;FR+Fcc is equal to the original Mayer bond where
the Coulomb pair interactionvsr ,r 8d is replaced by its re-
summed expressionfsr ,r 8d, while the short-range repulsion
is left unchanged.] The resummed Mayer diagrammatics of
haa8 is

haa8sx,x8,yd = o
P

1

SP
E

L
Fp

n=1

N

dr n o
an=1

ns

ran
sxndGfp FgP

.

s32d

In Eq. (32) the sum runs over all the unlabeled topologically
different connected diagramsP with two root pointssr ,ad
and sr 8 ,a8d (which arenot integrated over) and N internal
points (which are integrated over) with N=0, . . . ,̀ , and
which are built according to the following rules. Each pair of
points inP is linked by at most one bondF, and there is no
articulation point.(An articulation point is defined by the
fact that, if it is taken out of the diagram, then the latter is
split into two pieces, one of which at least is no longer linked
to any root point.) Moreover, in order to avoid double count-
ing in the resummation process, diagramsP must be built
with an “excluded-composition” rule: there is no point at-
tached by only two bondsFcc to the rest of the diagram.
fpFgP is the product of the bondsF in theP diagram andSP

is its symmetry factor—i.e., the number of permutations of
the internal pointsr n that do not change this product. Every
point has a weight equal torasxd that is summed over all
species. We have used the convention that, ifN is equal to 0,
no eL dr n ran

sxnd appears ands1/SPdfpFgP is reduced to
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Fsr ,r 8d Near the wall, L denotes a finite-size region
bounded by the wall on the left, whereas, in the bulk,L
stands for a finite-size region far away from the wall. The
screened potentialf is integrable at large distances.[In the
bulk f decays exponentially fast in all directions; near the

wall in the large-distance behavior given in Eq.(4), D̄fsxd
has an exponential decay and the 1/y3 tail is integrable.] As
a consequence,P diagrams correspond to convergent inte-
grals in the limit where the volumeL extends to infinity
inside the bulk or on the right of the wall.

C. Graphic reorganization of resummed diagrammatics

In haa8sr a,r a8
8 d we can distinguish four classes of dia-

grams by considering whether a single bondFcc is attached
to root pointa or to root pointa8. [a anda8 are short nota-
tions for the couple of variablessr a,ad andsr a8 ,a8d, respec-
tively, which are associated with the root points in a Mayer
diagram.] haa8 can be rewritten as the sum

haa8 ; haa8
cc + haa8

c− + haa8
−c + haa8

−− , s33d

where inhaa8
cc both a anda8 carry a single bondFcc, in haa8

c−

shaa8
−c d only asa8d is linked to the rest of the diagram by a

single bondFcc, and inhaa8
−− neithera nor a8 is linked to the

rest of the diagram by only one bondFcc.

1. Screening rules

A first interest of decomposition(33) is that it enables one
to derive the basic screening rules(recalled hereafter) from
the fact that they are already fulfilled by the diagram made of
a single bondFcc [because of the corresponding sum rules
obeyed by the screened potentialfsr ,r 8d]. Moreover, since
the sum rules are linked to the large-distance behavior of the
charge-charge correlation function, decomposition(33) also
enables one to show that if some diagrams are to be kept for
their contributions tohaa8

−−as in some dilute regime, then the
corresponding diagrams “dressed” withFcc bonds inhaa8

cc ,
haa8

c− , andhaa8
−c are also to be retained, together with the bond

Fcc, in order to ensure that the screening rules are still satis-
fied.

The basic screening rules are the following. In a charge
fluid with Coulomb interactions, an internal charge of the
system, as well as an infinitesimal external charge, is per-
fectly screened by the fluid: each charge is surrounded by a
cloud which carries exactly the opposite charge. These prop-
erties can be written in a compact form in terms of the
charge-charge correlation defined as

Csr ,r 8d ; e2Ho
a

Za
2rasr ddsr − r 8d

+ o
a,a8

ZaZa8rasr dra8sr 8dhaa8sr ,r 8dJ . s34d

The internal-screening rule reads

E dro
a

Zarasr dhaa8sr ,r 8d = − Za8, s35d

and, by performing the summationoa8Za8ra8sr 8d3 Eq. (35),
the internal-screening sum rule implies that

E dr Csr ,r 8d = 0. s36d

By virtue of the linear response theory, the external-
screening sum rule reads

b

esolv
E dr E dr 8 vsr 0,r 8dCsr 8,r d = 1. s37d

The latter equation, derived for inhomogeneous systems by
Carnie and Chan[16], is the generalization of the sum rule
first settled by Stillinger and Lovett[17] for the second mo-
ment of Csr ,r 8d in the homogeneous case(see next para-
graph). As a consequence of the internal screening sum rule,
Eq. (37) holds whatever short-distance regularization may be
added to the pure Coulomb interactionvsr 0,r 8d [3].

In the bulk, the translational invariance in all directions
implies that sum rules(36) and(37) are relative, respectively,
to thek=0 value and to the coefficient of thek2 term in the
k expansion ofCBskd. Both sum rules are summarized in the
following small-k behavior:

CBskd ,
k→0

esolv

4pb
k2. s38d

In the vicinity of a wall, there is translational invariance only
in directions parallel to the plane interface, and the Carnie-
Chan sum rule(37) takes the form of a dipole sum rule
[3,18]:

E
0

+`

dxE
0

+`

dx8E dy x8Csx,x8,yd = −
esolv

4pb
. s39d

As shown in Ref.[19], the first moment ofCsx,x8 ,yd is
linked to the amplitude fCsx,x8d of the 1/y3 tail of
Csx,x8 ,yd:

E
0

+`

dx8E dy x8Csx,x8,yd =
esolv

eW
2pE

0

+`

dx8 fCsx,x8d.

s40d

fCsx,x8d coincides with −boaa8 e2ZaZa8rasxd
3ra8sx8dfaa8sx,x8d, where −bfaa8sx,x8d /y3 is the large-
distance behavior ofhaa8sx,x8 ,yd. Therefore, the moment
rule (39) can be rewritten as a sum rule for the amplitude
faa8sx,x8d, first derived in Ref.[20]:

E
0

+`

dxE
0

+`

dx8o
aa8

e2ZaZa8rasxdra8sx8dfaa8sx,x8d =
eW

8p2b2 .

s41d

[We notice that there is a misprint in paper I, where the
above sum rule is written in Eq.(4) with an extra spurious
coefficient 1/esolv on the RHS.]
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Now, we show how the combination of decomposition
(33) with sum rules obeyed byf enables one to derive the
two basic screening rules. A key ingredient of the derivation
is the relations betweenhcc andh−c, on the one hand, andhc−

andh−− on the other hand, which arise from their definitions.
In the bulk, because of the full translational invariance,

the latter relations take simple forms in Fourier space. They
read

haa8
cc skd = F aa8

cc skd + o
g1

rg1

B F ag1

cc skdhg1a8
−c skd s42d

and

haa8
c− skd = o

g1

rg1

B F ag1

cc skdhg1a8
−− skd. s43d

(For the sake of clarity, in the present paragraph, we forget
the superscripts “B”, except in the densities, inhaa8 and in
C.) On the other hand, by virtue of the explicit expression
(59) of fB,

o
a

Zara
BF aa8

cc sk = 0d = − Za8. s44d

In other words, the partF cc in haa8
B already fulfills the

internal-screening sum rule. When relations(42) and(43) are
inserted in decomposition(33) of haa8

B ,

haa8
B skd = F aa8

cc skd + Fo
g1

rg1

B F ag1

cc skdhg1a8
−c skd + haa8

−c skdG
+ Fo

g1

rg1

B F ag1

cc skdhg1a8
−− skd + haa8

−− skdG . s45d

Then property(44) implies that, inoa Zara
Bhaa8

B sk=0d, the
contribution fromhcc−F cc, given in Eq.(42), cancels that
from h−c, and the contribution fromhc−, given in Eq.(43),
compensates that fromh−−, so that the internal-screening rule
is indeed satisfied.

In the case of the bulk external-screening rule(38), the
same mechanism operates when thek2 term in the small-k
expansion ofCBskd is considered. The charge-charge corre-
lation CF cc

B , where haa8
B is replaced byF aa8

cc , fulfills the
second-moment sum rule:

CF cc
B skd ,

k→0

esolv

4pb
k2. s46d

Again, by virtue of Eq.(44), decomposition(45) implies that
the k2 term in h−c is canceled by the part of thek2 term in
hcc−F cc=og1

rg1

B F ag1

cc skdhg1a8
−c skd that arises from thek2 term

in h−c. Similarly, thek2 term inh−− is canceled by the part of
the k2 term in hc−=og1

rg1

B F ag1

cc skdhg1a8
−− skd that arises from

the k2 term in h−−. Moreover, Eqs.(43) and (44) imply that

oa8Za8ra8
B hga8

−c sk=0d=−og8Zg8rg8
B hgg8

−− sk=0d, so that the part
of thek2 term inhcc−F cc that comes from thek2 term inF cc

is opposite to the part of thek2 term in hc− that is generated
by thek2 term inF cc. We notice that the present argument is
analogous to that found in Ref.[21] for an analogous decom-
position in a quantum charge fluid.

In the vicinity of the wall, the derivation of screening
rules (35) and (41) also relies on the analog of decomposi-
tion (45) and on two sum rules derived forf in paper
I—namely, if x8.b,

E
0

+`

dx k̄2sxdE dy fsx,x8,yd = 4p s47d

and

E
0

+`

dxE
0

+`

dx8 k̄2sxdk̄2sx8dffsx,x8d = 2
eW

esolv
. s48d

The Fourier transform of a functionfsyd at wave vectorl is
defined asfsld;edy expsi l ·ydfsyd. Thanks to the transla-
tional invariance in the directiony parallel to the plane in-
terface, the relations, which arise from their definitions, be-
tweenhcc and h−c, on the one hand andhc− and h−− on the
other hand, take the simple form

haa8
cc sx,x8,ld = F aa8

cc sx,x8,ld

+E
0

+`

dx1o
g1

rg1
sx1dF ag1

cc sx,x1,ldhg1a8
−c sx1,x8,ld

s49d

and

haa8
c− sx,x8,ld =E

0

+`

dx1o
g1

rg1
sx1dF ag1

cc sx,x1,ldhg1a8
−− sx1,x8,ld.

s50d

Equations(47) and(48) imply thatF cc saturates the internal
sum rule(35) and the external sum rule(41), respectively.

The external-screening sum rule(41) in the vicinity of the
wall is studied again in Sec. VI B. We show that, in the case
where all species have the same closest approach distance to
the wall, decomposition(33) enables one to derive a sum

rule fulfilled by the effective dipole amplitudeD̄asxd.

2. Large-distance tails

Another interest of decomposition(33) is that the large-
distance behavior of the Ursell functionhaa8 can be conve-
niently analyzed from this decomposition, after a suitable
reorganization of resummed Mayer diagrams, which has

FIG. 1. Representation ofhaa8
cc sr ,r 8d as the graph series defined in Eq.(51). A wavy line represents a bondFcc and a gray disk stands for

a bondI. A couple of variablessr i ,gid is associated with every circle. For a white circlea=sr ,ad [or a8=sr 8 ,a8d], r anda are fixed, whereas,
for a black circlei =sr i ,gid, r i andgi are integrated over with the measureedr i oai

rai
sr id.

J.-N. AQUA AND F. CORNU PHYSICAL REVIEW E70, 056117(2004)

056117-8



been introduced in paper I. The resummed Mayer diagram-
matics (32) for haa8 is reexpressed in terms of “graphs”
made of two kinds of bonds: the bondF cc and the bondI
that is defined as the sum of all subdiagrams that either con-
tain noF cc bond or remain connected in a single piece when
a bondF cc is cut. FR falls off faster thanF cc at large dis-
tances(namely, asfF ccg2/2) and the topology of subdia-

grams involved inI implies thatI decays faster thanF cc at
large distances in a sufficiently dilute regime. Since the re-
organization is purely topological, it is valid for correlations
in the bulk as well as in the vicinity of the wall. According to
the excluded-composition rule obeyed by resummedP dia-
grams, the functions on the RHS of Eq.(33) are equal to the
series represented in Figs. 1–3, respectively,

haa8
cc sr ,r 8d = F ccsa,a8d +E dr 1dr 18 o

g1,g18

rg1
sr 1drg18

sr 18dF
ccsa,1dIs1,18dF ccs18,a8d

+E dr 1 dr 18 o
g1,g18

rg1
sr 1drg18

sr 18d E dr 2 dr 28 o
g2,g28

rg2
sr 2drg28

sr 28dF
ccsa,1dIs1,18dF ccs18,2dIs2,28dF ccs28,a8d + ¯ ,

s51d

haa8
c− sr ,r 8d ; E dr c8o

g8

rg8sr c8dF
ccsa,c8dIsc8,a8d

+E dr c8o
g8

rg8sr c8d E dr 1 dr 18 o
g1,g18

rg1
sr 1drg18

sr 18dF
ccsa,1dIs1,18dF ccs18,c8dIsc8,a8d + ¯ , s52d

while h−c is defined in a symmetric way, and

haa8
−− sr ,r 8d ; Isa,a8d +E dr cE dr c8o

g,g8

rgsr cdrg8sr c8dIsa,cdF ccsc,c8dIsc8,a8d

+E dr cE dr c8o
g,g8

rgsr cdrg8sr c8d E dr 1 dr 18 o
g1,g18

rg1
sr 1drg18

sr 18dIsa,cdF ccsc,1dIs1,18dF ccs18,c8dIsc8,a8d + ¯ .

s53d

In the previous definitionsc is a short notation forsr c,gd,
and i stands forsr i ,aid.

We notice that, according to previous section, any contri-
bution to I automatically generates a change inhaa8 that
preserves the two basic screening sum rules. In the bulk, the
external-screening rule(38) is also retrieved from the com-
pact formulas obtained by resummations in the graphic ex-
pansion(51)–(53), as shown in Sec. IV E.

III. WEAK-COUPLING REGIME

A. Small parameters

Now we take into account the fact that in an electrolyte all
species have charges and diameters of the same magnitude
orderse ands, respectively. Moreover, all bulk densities are

comparable, and the typical interparticle distance does not
depend on species: it is denoted bya. First, we assume that
the densities are so low that the volume fractionss /ad3 of
particles is small;

Ss

a
D3

! 1. s54d

Our second assumption is that the temperature is high
enough for the mean closest approach distance between
charges of the same sign at temperatureT, of order
be2/esolv,to be small compared with the mean interparticle
distancea. In other words, the Coulombic coupling param-
eterG between charges of the fluid is negligible:

FIG. 2. Graphic representation of definition(52) for haa8
c− sr ,r 8d.
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G ;
be2

esolva
~ S a

jD
D2

! 1. s55d

[The proportionality relation in Eq.(55) arises from defini-
tion (5).] The high-dilution condition(54) implies the weak-
coupling conditionG3!1, if be2/ sesolvsd is of order unity or
smaller than 1.

In fact, conditions(54) and (55) can be realized in two
different kinds of expansions in the density and temperature
parameters. In the first situation, the density vanishes at fixed
temperature; then, the ratio between the pair energy at con-
tact and the mean kinetic energy,be2/ sesolvsd, is also
fixed—namely,

Ss

a
D3

~ G3 cases1d. s56d

In the second situation the density vanishes while the tem-
perature goes to infinity, so thatbe2/ sesolvsd also vanishes—
namely,

G3 ! Ss

a
D3

cases2d. s57d

B. Expansions of resummed diagrams

The discussion of theG and ss /ad expansions of the in-
tegrals associated with resummedP diagrams is easier if we
split the bondFR into two pieces

FR =
1

2
fF ccg2 + FRT. s58d

(The notationFRT refers to the truncation with respect toFR.)
Diagrams built with bondsF cc, fF ccg2/2, and FRT—and
with the same exclusion rule for bondsF cc as in P

diagrams—will be calledP̃. The Ursell functionhaa8 is rep-

resented in terms ofP̃ diagrams by the same formula(32) as
in the case ofP diagrams. The splitting(58) has already
been used for a classical plasma in the vicinity of a dielectric
wall in Ref. [12], and its use was detailed for quantum plas-
mas in the bulk in Refs.[22,26].

For the sake of simplicity, the scaling analysis of dia-
grams is now discussed in the case of the bulk. The bulk
screened potentialfB obeys Eq.(28) far away from any
boundary, wherek̄sxd no longer depends onx and coincides
with the inverse Debye screening lengthkD. Then, Eq.(28)
is reduced to the usual Debye equation, and sincefB is a
function of ur −r 8u that vanishes whenur −r 8u goes to infinity,
it is equal to the well-known Debye potentialfD:

fBsur − r 8ud = fDsur − r 8ud ;
e−kDur−r8u

ur − r 8u
. s59d

The integrals of the diagrams with a single bond can be
calculated explicitly, and their orders inG and s /a are the
following:

E dr 8 ra
BF ccsr ,r 8d = OsG0d s60d

and

E dr 8 ra
B1

2
fF ccg2sr ,r 8d = OsG3/2d, s61d

whereOsG0d and OsG3/2d denote terms of orders unity and
G3/2, respectively. According to Eq.(31),

FRTsr ,r 8;a,a8d =5− 1 −F ccsr ,r 8d −
1

2
fF ccg2sr ,r 8d if ur − r 8u , ssa + sa8d/2,

o
n=3

+`
1

n!
fF ccgnsr ,r 8d if ur − r 8u . ssa + sa8d/2.

s62d

If we assume, for the sake of simplicity, that all particles have the same diameters, the expressionFRT
B of FRT in the bulk leads

to [23]

E dr 8 FRT
B sr ,r 8;a,a8d = −

4p

3
s3 + 2p

be2ZaZa8

esolv
s2 − 2pSbe2ZaZa8

esolv
D2

s+
2p

3
Sbe2Za Za8

esolv
D3

fC + lns3kDsdg

− 4pSbe2Za Za8

esolv
D3

o
n=1

+`
s− 1dn

sn + 3d ! n
Sbe2Za Za8

esolvs
Dn

+ RG3/2, s63d

whereRG3/2 denotes terms which are of relative orderG3/2 with respect to those written on the RHS of Eq.(63). Therefore,

FIG. 3. Graphic representation of definition(53) for haa8
−− sr ,r 8d.
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sincera
B is of order 1/a3, at leading orderedr 8 ra

BFRTsr ,r 8d is a sum of terms with respective orders

Ss

a
D3

, Ss

a
D2

G,
s

a
G2, G3, G3 lnFSs

a
D2

GG, G3fS be2

esolvs
D , s64d

where be2/ sesolvsd=G / ss /ad and the function fsud
;on=1

+` s−1dnun/ fsn+3d ! ng vanishes foru=0. The last term
in Eq. (64) arises from the short-distance behavior of the
Boltzmann factor, the explosion of which for oppositely
charged species is prevented by the cutoff distances pro-
vided by the hard-core repulsion.

As already noticed in paper I, the contributions from
excluded-volume effects in the primitive model are not in-
volved in F cc but they are contained inFR. Indeed,the po-
tentialf solution of Eq.(28) describes resummed interhyac-
tions between point charges at the centers of penetrable
spheres, because it corresponds to the integral equation

fsr ,r 8d = vsr ,r 8d −
be2

esolv
E dr 9o

a

Za
2rasx9dvsr ,r 9dfsr 9,r 8d.

s65d

We notice that, in the bulk, for the primitive model again, in
a linearized mean-field Poisson-Boltzmann theory where
excluded-volume spheres are taken into account[1], an extra
Heaviside functionu(ur 9−r 8u−ssa9+sa8d /2d) appears in an
equation analogous to Eq.(65), and the effective inter-
action between two chargesea and ea8 behaves as
eaea8 exph−kDfr −ssa+sa8d /2dgj / hf1+kDssa+sa8d /2grj at
large relative distancesr. The latter interaction is equal to
eaea8fBsrd up to a steric correction of orderskDsd2

~Gss /ad2. This is also the case in the so-called Derjaguin-
Landau-Verwey-Overbeek(DLVO) theory [24,25] for an-
other model where every charge is spread over the surface of
the excluded-volume sphere instead of being concentrated at
its center. In the corresponding effective interaction at large
distances, the denominator of the steric factor which multi-
plies exps−kDrd / r takes the slightly different formf1
+kDssa+sa8d /4g2. The orderGss /ad2 of this steric correc-
tion is one among the contributions listed in Eq.(64).

By using the variable changer ; r̃ /kD, it can be shown

that, when the number of internal points in aP̃ diagram
increases, then the lowest order inG at which it contributes
to various integrals also increases.(See, e.g., Ref.[22] or
[26].)

C. Scaling regimes

As shown in previous section, in the bulk the leading
coupling correction is of orderG3/2, and the next correction
without any steric contribution is of orderG3. The orders of
the first corrections induced by steric effects involves /a and
G through the combinations written in Eq.(64).

In the first scaling regime(56), all terms in Eq.(64) are of
order G3, and the leading correction is indeed provided by

the correction of orderG3/2 arising only from Coulomb inter-
actions for point charges in the Debye approximation. More-
over, we notice that in this regime, where the temperatureT
is fixed,G3/2 is proportional toÎoa ra

BZa
2: the density expan-

sions prove to involve powers of the square root of a linear
combination of densities.(The appearance of such square
roots instead of integer powers in density expansions is an
effect of the long range of Coulomb interactions, which
makes the infinite-dilution and vanishing-coupling limit sin-
gular.)

In the second case(57), be2/ sesolvsd vanishes, and terms
in Eq. (64) are of ordersss /ad3 andss /ad3 times a function
of be2/ sesolvsd which tends to zero whenbe2/ sesolvsd goes
to zero. The explicit calculations will be performed in a sub-
case where the leading coupling correction of orderG3/2 is
large compared with all corrections involving steric effects.
This property is fulfilled ifss /ad3/G3/2 goes to zero, and the
corresponding subregime reads

G3 ! Ss

a
D3

! G3/2 subcases2d. s66d

In place ofG, we shall use the parameter« defined in Eq.
(11), because the first coupling correction is of order

G3/2 ~ «. s67d

[See Eq.(55) and the definition(5) of kD.] In the first scaling
regime, relation(56) can be written asss /ad3~«2. Then all
terms in Eq. (64) are of order «2, «2 ln «, and
«2fsbe2/esolvsd, and the whole double expansion in powers
of « and s /a proves to be a series in integer powers of«
times some possible powers of ln«, at fixedbe2/ sesolvsd. In
the second regime, condition(57) reads«2! ss /ad3 and the
extra condition in Eq.(66) is ss /ad3!«.

In the following, the so-called “weak-coupling” regime
refers to the scaling limit(12) or (13). Moreover, the term
“« expansions” refers to« and s /a expansions, as if they
were always performed in the scaling regime(12).

D. Pair correlation at any distance in the weak-coupling limit

The scaling analysis of« expansions for resummedP̃
diagrams(see Sec. III B) shows that the« expansions of
integrals involvingI start at least at relative order«. As a
consequence, at any relative distance, the pair correlation
h

aa8
s0d in the infinite-dilution and vanishing-coupling limit

arises only from the sum ofP diagrams with a single bond
and where the screened potentialf is replaced by its leading
valuefs0d: h

aa8
s0d =Fccs0d+FR

s0d. [In other words, only the graph

with one bondFcc in hcc and the graphI in haa8
−− whereI is
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replaced by FR do contribute at finite distances:h
aa8
ccs0d

=Fccs0d, h
aa8
c−s0d=h

aa8
−cs0d=0, and h

aa8
−−s0d=s1/2dfFccs0dg2+FRT

s0d

=FR
s0d.] At any finite distanceur −r 8u, h

aa8
s0d reads

haa8
s0d sr ,r 8d = uSur − r 8u −

sa + sa8

2
D

3expF−
be2

esolv
ZaZa8f

s0dsr ,r 8dG − 1. s68d

In the bulk the inverse screening lengthk̄ in Eq. (28) does
not depend onx, k̄=kD and fB

s0d=fB given in Eq. (59),
wherefB obeys the Debye equation with the same boundary
conditions as the bare Coulomb potentialvB far away from
any vessel surface. Near the wall, since the density profiles
created by interactions depend on the coupling strength,
k̄2sxd has an« expansion and hasfsx,x8 ,yd. In the infinite-
dilution and vanishing-coupling limit,k̄2sxd tends tokD

2 and
fs0d obeys Debye equation with the same boundary condi-
tions as the bare Coulomb potentialv, which take into ac-
count the dielectric response of the wall.

The large-distance behavior ofhaa8 at leading order,h
aa8
ass0d,

is equal to the large-distance behavior ofh
aa8
s0d —namely,

haa8
ass0dsr ,r 8d = −

be2

esolv
ZaZa8f

s0d assr ,r 8d. s69d

In other words, sinceFR decays only as the square ofF cc, in
the diagrammatic representationh

aa8
as s0d arises only from the

diagram with one bondF cc, wheref is replaced byfs0d.

(The diagram with one bondF cc is calledP̃a in the follow-
ing and is shown in Fig. 7.) Subsequently, the first term in
the « expansion ofk is

ks0d = kD. s70d

IV. BULK CORRELATIONS

In the bulk, the Ursell functionhaa8 decays exponentially
fast in all directions[27]. In the high-dilution and weak-
coupling regime, the leading tail at large distances is a mono-
tonic exponential decay over the screening length 1/kB (see
Ref. [28] for a review), while damping might become oscil-
latory in regimes with higher densities, as expected from
various approximate theories(see, e.g., Refs.[11,29]).

The resummed Meeron diagrammatic expansions used in
the present paper enable one to retrieve the existence of an
exponential decay in the dilute regime. Indeed, all resummed
Mayer diagramsP are built with bondsF cc, Eq. (30), and
FR, Eq. (31), the large-distance decays of which are ruled by
the screened potentialfB that is the solution of Eq.(28) in
the bulk. By virtue of Eq.(59), fB falls off exponentially
over the length scale 1/kD defined in Eq.(5). The monotonic
exponential decay ofhaa8 over the length scale 1/kB in the
dilute regime is expected to be given by partially resumming
the tails ofP diagrams, which decrease exponentially over
the scale 1/kD, though the convergence of the corresponding
series is not controlled.

Before going into details, we introduce the following defi-
nitions. Let fsrd be a rotationally invariant function that de-
cays exponentially fast at large distancesr. Let kD be the
smallest inverse screening length in the exponential tails off.
f may contain several tails expf−kDrg / rg with various expo-
nentsg’s, which may be negative. We define the slowest of
the exponential tails off, denoted byf slowsrd hereafter, as the
sum of all tails exps−kDrd / rg, with any exponentg. In other
words, f slowsrdis the large-distance behavior with the largest
screening length in the exponential and all possible powers
of r. The notationf assrd will be restricted to the leading tail
in the large-distance behavior offsrd: f assrd is the leading
term in f slowsrd—namely, the contribution inf slowsrd with
the smallest exponentg. For instance, as argued in Appendix
A, if f =fDpffDg2, f slowsrd=a exps−kDrd / r and f as= f slow,
whereas, if f =fDpffDg2pfD, f slowsrd=fb+crgexps−kDrd / r
and f as=c exps−kDrd.

A. Resummations of geometric series in Fourier space

The translational invariance in the bulk implies that the
graph series in the decomposition(33)–(53) of haa8 are sums
of convolutions. In Fourier space, they become geometric
series which are resummed into compact formulas.haa8

ccBskd
merely reads

haa8
ccBskd = −

be2

esolv
ZaZa8

fDskd

1 + fDskdĪskd
, s71d

where

fDskd =
4p

k2 + kD
2 s72d

and

Īskd ;
be2

esolv
o
g,g8

rg
Brg8

B ZgZg8Isk;g,g8d. s73d

haa8
ccBskd is reduced to a fraction

haa8
ccBskd = −

be2

esolv

4p

k2 + kD
2 + 4pĪskd

ZaZa8. s74d

The same geometric series appears in the case ofhaa8
c−B and

haa8
−−B with the results

haa8
c−Bskd = −

be2

esolv

4p

k2 + kD
2 + 4pĪskd

Zao
g8

rg8
B Zg8Isk;g8,a8d

s75d

and

haa8
−−Bskd = Isk;a,a8d −

be2

esolv

4p

k2 + kD
2 + 4pĪskd

3o
g

rg
BZg Isk;g,ado

g8

rg8
B Zg8Isk;g8,a8d.

s76d

Finally, haa8
B skd takes the half-factorized form

J.-N. AQUA AND F. CORNU PHYSICAL REVIEW E70, 056117(2004)

056117-12



haa8
B skd = Isk;a,a8d −

be2

esolv

4p

k2 + kD
2 + 4pĪskd

3FZa + o
g

rg
BZg Isk;g,adG

3FZa8 + o
g8

rg8
B Zg8Isk;g8,a8dG . s77d

From this expression we readily get thatoaZara
Bhaa8

B sk=0d
=−Za8, which is another writing of the internal-screening
sum rule(35) in the bulk case.[We also notice that the writ-
ing of haa8

B skd in Eq. (77) is analogous to Eq.(2.110) of Ref.
[30], where the authors consider the Feynman diagrammatics
for a field theory, with some short-distance regularization,
which modelizes a charge fluid.]

B. Large-distance behavior of bulk correlations

When the bulk Ursell functionhaa8sr ,r 8d is only a func-
tion of ur −r 8u and decays faster than any inverse power of
ur −r 8u when ur −r 8u becomes infinite, its large-distance be-
havior haa8

as sr ,r 8d is determined by the general formulas re-
called in Appendix A. As checked at first order in« in next
section, the singular points ofIsk;g ,g8d in the weak-
coupling regime are more distant from the real axis in the
upper complex half-planek=k8+ ik9 than the polek0 of the

fraction 1/fk2+kD
2 + Īskdg that has the smallest positive

imaginary part. Moreover,k0 is purely imaginary,k0= ikB,
andk0 is a pole of rank 1.

Therefore, in the weak-coupling regime, the slowest ex-
ponential tail ofhaa8

B is a purely exps−kBrd / r function, as
well as the slowest exponential tails ofhaa8

ccB, haa8
−cB, haa8

c−B, and
haa8

−−B. By inserting the property

ResuF 1

k2 + kD
2 + 4pĪskd

G
k=k0

= F2k0 + 4pU ] Īskd
] k

U
k0

G−1

s78d

into the general formula(A2) applied tof =haa8 given in Eq.
(77) with k0= ikB, we find that the large-distance behavior
haa8

B assrd of haa8
B srd takes the form

haa8
B assrd = −

be2

esolv
Za

eff BZa8
eff Be−kBr

r
, s79d

where ikB is the pole of 1/fk2+kD
2 + Īskdg with the positive

imaginary part and

Za
eff B =

Za + og
rg

BZg IsikB;g,ad

Î1 − is2p/kBd ] Īskd/] kui kB

. s80d

C. Large-distance tail at order «

According to the scaling analysis of Sec. III B, the first
term in the« expansion ofIskd is I s1dskd with I s1d=fFccg2/2.

Ī s1d is calculated from the definition(73) of Īskd with I s1d in
place ofI. By using

ffD
2 gskd =

4p

k
arctanS k

2kD
D s81d

and

1

2
S be2

esolv
D3S4po

g

rg
BZg

3D2
= kD

3 «SS3

S2
D2

, s82d

whereSm is defined in Eq.(15), we get

4pĪ s1dskd = «kD
2SS3

S2
D2kD

k
arctanS k

2kD
D . s83d

I s1d and Ī s1dskd have a branch point atk=2ikD, while fk2

+kD
2 +4pĪ s1dskdg−1 has a pole at the value ofk equal to

ikDF1 +
2p

kD
2 Ī s1dsikDd + os«dG . s84d

The leading corrections involved in the notationos«d are
given in Eq.(64). The latter pole is closer to the real axis
than the branch point atk= i2kD. Therefore, at first order in
«, the singular point inhaa8

B skd that is the closest one to the
real axis in the upper complex half-plane ofk is the pole of

1/fk2+kD
2 +4pĪ s1dskdg.

The scenario of Sec. IV B does happen at leading order in
« and the large-distance behaviorhaa8

B assrd up to order« takes
the form (79) wherek0= ifkD+dkB

s1dg with

dkB
s1d =

2p

kD
Ī s1dsikDd. s85d

According to Eq.(83) we find

dkB
s1d

kD
= «SS3

S2
D2ln 3

4
. s86d

We retrieve the formula of Ref.[11] obtained from integral
equations. It is reduced to the results obtained by Mitchell
and Ninham through diagrammatic techniques for the one-
component plasma[10] or for a two-component electrolyte
[31]. (The formulas for the one-component plasma can be
derived from those calculated for a two-component plasma
with chargese+ ande− and densitiesr+ andr− by taking the
limit where e− vanishes whiler− diverges under the con-
straint e−r−=−e+r+.) The correctiondkB

s1d vanishes in the
case of a 1:1 electrolyte. If the electrolyte is not charge sym-
metric, the expression(86) shows that the screening length
1/kB is a decreasing function of the coupling parameter« at
first order in«.

The bulk effective chargeZa
eff B up to order« is calculated

by formula(80). The explicit result is written in Eq.(16). In
view of the discussion of next section, we rewriteZa

eff B as

Za
eff B = Zaf1 + Aa

s1d + os«dg. s87d

The amplitude(79) of haa8
B assrd up to order« can be rewritten

as

CHARGE RENORMALIZATION AND OTHER EXACT… PHYSICAL REVIEW E 70, 056117(2004)

056117-13



haa8
B assrd = −

be2

esolv

ZaZa8

r
hf1 + Aa

s1d + Aa8
s1dge−skD+dkB

s1ddr + os«dj.

s88d

To our knowledge, the amplitude ofhaa8
B assrd for a multicom-

ponent plasma has not been calculated in the literature pre-
viously. In the limit of the one-component plasma, it is the
same as that found by Mitchell and Ninham in Ref.[10] by a
diagrammatic method.

We notice that the use of Eq.(80) with Ī s1d in place ofĪ is
equivalent to replacing the diagrammatic series ofhaa8

ccB, haa8
c−B,

and haa8
−−B shown in Figs. 1–3 by the corresponding series

represented in Figs. 4–6. As shown in Appendix B, the cor-
rection dkB

s1d to the screening length inhccB, hc−B, andh−−B

arises from the whole series in Figs. 4–6, respectively.
On the contrary, the first corrections to the effective bulk

charges can be seen as arising from only a finite number of
diagrams in Figs. 4 and 5. This will be shown in next section.
The property relies on the following rewriting ofhaa8

B assrd:

haa8
B assrd = −

be2

esolv

ZaZa8

r
hf1 + Aa

s1d + Aa8
s1d − dkB

s1drge−kDr + os«dj.

s89d

We point out that Eq.(89) is valid for any distancer. Indeed
expf−skD+dkB

s1ddrg=s1−dkB
s1drdexps−kDrd+os«d for any dis-

tance, whereas expf−skD+dkB
s1ddrg=f1−dkB

s1dr +os«dg
3exps−kDrd only for distances r ,Lmax;jD /«n with
n,1/2. The conditionn,1/2 ensures that forr ,Lmax ev-
ery nth term withnù2 in the expansion of the exponential
expf−dkB

s1drg is indeed a correction, of order«ns1−nd=os«d,
with respect to theOs«1−nd term dkB

s1dr.

D. Alternative derivation of the bulk large-distance tail
at order «

In view of calculations in the vicinity of a wall, where the
infinite series inf =hccB, hc−B, or h−−B can no longer be re-
summed in Fourier space, because of the loss of translational
invariance in the direction perpendicular to the wall, we
show how to retrieve the expression(88) for haa8

B as in a less
systematic way than the method involving the resummed for-
mulas(79) and(80). (For the sake of simplicity we omit the
indicesa anda8 for charge species in the notationf.)

In the general method of Secs. IV A and IV B, we per-
formed Fourier transforms; then, we resummed the four in-

finite series f =hccB, hc−B, h−cB, and h−−B that definehaa8
B

through the graphs shown in Figs. 1–3, and we got a compact
formula for haa8

B skd from which we calculated the large-
distance behaviorhaa8

B assrd of haa8
B srd. Here, on the contrary,

in each seriesf we formally calculate the slowest exponen-
tial tail f m

slowsrd of everygraphfm, with m bondsFcc, directly
in position space by using the residue theorem, and the large-
distance behaviorf as of f =hcc, hc−, h−c, or h−− is given by
the sum(over m) of the slowest tailsfm

slowsrd’s in each case.
(The slowest exponential tail is defined in the introduction of
Sec. IV.)

The second procedure is more cumbersome, because the
series sumsfskd’s have a pole of rank 1 atk= ikB and their
inverse Fourier transform decay as exps−kBrd / r, whereas
each termfmskd in the series has a multiple pole of rankm at
k= ikD and its inverse Fourier transform behaves as
exps−kDrd / r times a polynomial inr of degreem−1. We
point out that, in the present« expansion off assrd around its
expf−kDrg / r limit behavior in the infinite-dilution and
vanishing-coupling limit(where only the bondFcc contrib-
utes), for every graphfm we must retain the entire slowest
tail f m

slow—namely, the entire polynomial inr—and we only
disregard tails expf−lkDrg / r with l ù2. [See the example in
Eq. (A5).] The procedure is legitimate as long as dilution is
sufficiently high. Details are given in Appendix B and we
give only a summary in the present section.

1. General structure of the« expansion of haa8
as

As long as densities are low enough, the graphI decays
faster than the bondF cc, and as shown in Appendix B, the
slowest tailf m

slowsrd of fmsrd is equal to expf−kDrg / r times a
polynomial in r of rank m−1, op=0

m−1 Fm,pr
p. As a conse-

quence, the« expansion of the large-distance behavior of
haa8

B reads

haa8
B assrd =

e−kDr

r
o
p=0

+`

r pHpsa,a8;«d, s90d

where the coefficientHpsa ,a8 ;«d—which is the sum of the
contributions fromhccB, hc−B, h−cB, and h−−B—arises only
from thegraphsfm with mùp+1 in the series representations
shown in Figs. 1–3.[We recall that« is a short notation for
parameters« ands /a in the scaling regimes(56) and(66), as
explained at the end of Sec. III C.]

Moreover, according to the scaling analysis for« expan-
sions in Sec. III B, all coefficientsFm,p in the polynomial in

FIG. 4. Diagrams inhaa8
cc sr ,r 8d that contribute to the correction of order« in the screening length. A double wavy line denotes a bond

s1/2dfFccg2.

FIG. 5. Diagrams inhaa8
c− sr ,r 8d that contribute to the correction of order« in the screening length.
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the slowest tail of every graphfm with mù1 start at order
«n0+m−1, wheren0=0 if f =hccB, n0=1 if f =hc−B or h−cB, and
n0=2 if f =h−−B. Therefore, the« expansion ofHpsa ,a8 ;«d
starts at order«p, and after reversing the summation orders,

haa8
B assrd =

e−kDr

r
o
q=0

+`

«qo
p=0

q

r pHp
sqdsa,a8d, s91d

with

Hq
sqdsa,a8d = Fq+1,q

sqd sf = haa8
ccBd. s92d

Equation(91) displays that, in the« expansion ofhaa8
B assrd

around its expf−kDrg / r behavior in the limit where« van-
ishes, the leading tail ofhaa8

B assrd at order«q behaves asr q

times expf−kDrg / r. Moreover, by virtue of Eq.(92), it coin-
cides with the first term in the« expansion of the leading tail
in the slowest exponential decayf q+1

slowsrd of the graphfq+1

with sq+1d bondsFcc in f =haa8
ccB.

2. Renormalization of the screening length

As shown in Appendix B, for eachf =hccB, hc−B, h−cB, or
h−−B, the sumfas!srd of the leading tails at every order«n0+q

in the « expansion of fassrd around its lowest-order
«n0 expf−kDrg / r limit can be performed explicitly.(Indeed,
the coefficientaq

sn0+qd«n0+q of the leadingr q expf−kDrg / r tail
at order«n0+q in the « expansion off as coincides with the
first term in the« expansion of the coefficientFq+1,q of the
leadingr q expf−kDrg / r term in the slowest exponential de-
cay f q+1

slowsrd of the graphfq+1 with sq+1d bondsF cc, and the
formal expression ofFq+1,q in terms of I is given in Eq.
(B7).) f as!srd proves to be equal to expf−dkB

! rg times f1
assn0d,

the value at the first order«n0 of the large-distance behavior
of the graphf1 with only one bondFcc. As a consequence,
the sumhaa8

B as!srd of the leadingr q expf−kDrg / r tails at every
order «q in the « expansion ofhaa8

B assrd around its lowest-
order expf−kDrg / r limit, namely,

haa8
B as!srd ; o

q=0

+`

Hq
sqdsa,a8d«qrqe−kDr

r
, s93d

reads

haa8
B as!srd = Fccs0dsrde−dkB

! r . s94d

It arises from the leading«qr q expf−kDrg / r tails of haa8
ccB

only.

Moreover, dkB
! coincides with the first-order correction

dkB
s1d to the bulk screening length[see Eq.(85)] calculated

from the exact procedure of Sec. IV B:

dkB
! = dkB

s1d. s95d

Eventually, the resummation of the series of leading tails at
every order in« for hccB proves to be a way to retrieve the
value ofdkB

s1d.

3. Diagrams with slowest exponential tails of order«

As already seen in Sec. III D, diagramP̃a in Fig. 7 is the
only diagram whose slowest exponential tail[proportional to
exps−kDrd / r] has an amplitude of order«03be2/esolv. Dia-
grams whose slowest exponential tails have amplitudes of

order« are diagramsP̃b, P̃b!, andP̃c shown in Figs. 8 and 9
(which come from the serieshc−, h−c, andhcc, respectively,
whereI is replaced byI s1d, as shown in Figs. 4 and 5). The

contribution ofP̃b to haa8
B assrd reads

−
be2

esolv
ZaZa8

2
«

S3

S2

ln 3

2

e−kDr

r
, s96d

while the contribution ofP̃c is

−
be2

esolv
ZaZa8F− «SS3

S2
D2ln 3

4
kDr + 2«SS3

S2
D2

3S1

6
−

ln 3

8
DGe−kDr

r
. s97d

Indeed, the contribution of diagramP̃b is proportional to the
convolutionfDpffDg2 calculated in Eq.(A3), while the dia-

gramP̃c involves the convolutionfDpffDg2pfD, whose ex-
pression at any distance is given by Eq.(A5). We notice that

the diagramsP̃b, P̃b!, andP̃c have already been calculated
in the case of the electron gas[10].

By virtue of Eqs.(96) and (97), the sum of the slowest

exponential tails of diagramsP̃b, P̃b!, andP̃c coincides with
the expression(89) of haa8

B as up to order«, where dkB
s1d is

given in Eq.(86) and

Aa
s1d = ZaĀfbg

s1d + Afcg
s1d, s98d

with

Āfbg
s1d = «

S3

S2

ln 3

2
s99d

and

FIG. 6. Diagrams inhaa8
−− sr ,r 8d that contribute to the correction of order« in the screening length.

FIG. 7. DiagramP̃a. FIG. 8. DiagramsP̃b (on the left) andP̃b* (on the right).
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Afcg
s1d = «SS3

S2
D2S1

6
−

ln 3

8
D . s100d

The −dkB
s1dr term in Eq.(89) comes from diagramP̃c. The

term ZaĀfbg
s1dsZa8Āfbg

s1dd proportional toZa sZa8d in Aa
s1d comes

from P̃b sP̃b*d, whereas the other termAfcg
s1d arises fromP̃c.

Therefore, the constantsAa
s1d and A

a8
s1d are determined by

the exponential tails of only three diagramsP̃b, P̃b!, andP̃c.
[See the comment after Eq.(89) for a comparison with the
exact method of Sec. IV C.] Moreover, as a consequence of
the analysis summarized in Sec. IV D 2, the coefficient of the

r term in the amplitude of the slowest tail of diagramP̃c with
two Fcc bonds(see Fig. 9) must coincide with the opposite of
the first-order correctiondkB

s1d in the inverse screening
length.

E. Density-density and charge-charge correlation

By virtue of the bulk local charge neutrality,

o
a

eara
B = 0, s101d

the Fourier transform of the density-density correlation func-
tion takes the form

o
a,a8

ra
Bra8

B haa8
B skd = o

a,a8

ra
Bra8

B Isk;a,a8d

−
be2

esolv

4p

k2 + kD
2 + 4pĪskd

3Fo
a

ra
Bo

g

rg
BZgIsk;g,adG2

,

s102d

while the charge-charge structure factor, defined from Eq.
(34),

CBskd ; e2Ho
a

ra
BZa

2 + o
a,a8

ra
Bra8

B ZaZa8haa8skdJ ,

s103d

reads

CBskd =
esolv

4pbHkD
2 + 4pĪskd −

fkD
2 + 4pĪskdg2

k2 + kD
2 + 4pĪskd

J .

s104d

As announced in Sec. II C 1, the expression(104) of the
charge-charge structure factorCBskd indeed obeys the sum
rule (38), which summarizes both the internal-screening sum
rule (36) and the external-screening sum rule(37). [If a

phase transition gave rise to nonintegrable algebraic tails in

Īsrd and subsequent nonanalytic terms of orderkh with h

ø0 in the Fourier transformĪskd, then CBskd would still
vanish atk=0, but the coefficient of thek2 term would be
different from the universal value in Eq.(38), as exhibited in
the exactly soluble spherical model of Ref.[32].]

We stress that thek2 term in the Fourier expansion of
CBskd is independent of the short-range potentialvSRsur
−r 8u ;a ,a8d, which must be introduced in three dimensions
in order to avoid the collapse under the attraction between
charges with opposite signs. This property is a consequence
of the internal screening rule[3], and it is retrieved from the
structure of expression(104). On the contrary, thek2 term in
oa,a8ra

Bra8
B haa8

B skd given in Eq.(102) does not have any uni-
versal value: it depends on the short-distance repulsion in the
generic case. However, this is not the case for a symmetric
1:1 electrolyte in two dimensions[33,34], where the pure
logarithmic Coulomb interaction needs not be regularized at
short distances and is scale invariant. Then, for point
charges, scale-invariance arguments lead to a value of the
dimensionless second moment ofoa,a8ra

Bra8
B haa8

B srd that de-
pends only on the coupling parameterbe2. We also notice
that formulas(102) and(104) enable one to retrieve the lead-
ing low-density values of the coefficients of thek2 and k4

terms in the Fourier transforms of the density-density corre-
lation and of the charge-charge structure factor derived for a
symmetric 1:1 electrolyte in Ref.[35].

When there is no charge symmetry in the composition of
the electrolyte, the same argument as that used in Sec. IV B
implies that, according to Eqs.(102) and (104), the large-
distance behaviors of the density-density and charge-charge
correlations in the high-dilution and weak-coupling regime

are determined by the zerok0= ikB of k2+kD
2 + Īskd: they de-

cay over the same screeninglength as the correlationhaa8
B .

In the case of a symmetric electrolyte made of two species
with opposite charges +Ze and −Ze and with the same radii,
oa ra

Bog rg
BZgIsk ;g ,ad vanishes by virtue of the local neu-

trality (101) and of the symmetries[Isk ; + +d= Isk ;−−d and
Isk ; +−d= Isk ;−+d]. As a consequence,oa ra

Bhaa8srd and
oa,a8ra

Bra8
B haa8srd decay asIsr ;a ,a8d by virtue of Eq.(102).

Isr ;a ,a8d is expected to decay over the length 1/s2kBd, by
analogy with the infinite-dilution and vanishing-coupling
limit where it behaves as the diagramfFccg2/2, which falls
off over the scale 1/s2kDd. Therefore, in this peculiar case,
the “screening” length of the density-density correlation is
expected to be 1/s2kBd at low density, in agreement with the
result of Ref.[35].

V. SCREENED POTENTIAL ALONG THE WALL

A. Formal expression of the screened potential

Near the plane dielectric wall located atx=0, interactions
create density profiles and Eq.(28) is an inhomogeneous
Debye equation, where the inverse squared screening length
k̄2 depends on the distancex to the wall. Moreover,fsr ,r 8d
obeys the same boundary conditions asvsr ,r 8d [defined after
Eq. (20)]:

FIG. 9. DiagramP̃c.
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lim
x→0−

eW

esolv

] f

] x
sr ,r 8d = lim

x→0+

] f

] x
sr ,r 8d s105d

and

lim
x→b−

] f

] x
sr ,r 8d = lim

x→b+

] f

] x
sr ,r 8d, s106d

since particles are made of a material with the same dielec-
tric constant as the solvent. In order to take advantage of the
invariance along directions parallel to the wall, we introduce
the Fourier transform with respect to they variable, and we
write

fsx,x8,yd = kDE d2q

s2pd2e−iq·skDydef̃skDx,kDx8;qd.

s107d

In the following, the tilde index denotes dimensionless quan-
tities, such as the Fourier transformf̃skDx,kDx8 ;qd and the
dimensionless coordinatex̃;kDx.

The solution of the inhomogeneous Debye equation(28)
requires one to distinguish only three regions: region I for
x,0, region II for 0,x,b, and region III for b,x. In
regions I and II,k̄sxd vanishes by virtue of Eq.(29). Accord-
ing to Eq. (28), the dimensionless Fourier transform
f̃sx̃, x̃8 ;qd obeys a one-dimensional differential equation.
Whenx8.b it reads

H ] 2

] x̃2 − q2Jf̃sx̃,x8̃;qd = 0 if x̃ , b̃. s108d

The solution with boundary conditions(105) and (106) is

f̃sx̃,x̃8,uqud =HBsx̃8,uquds1 − Deldeuqux̃ if x̃ , 0,

Bsx̃8,uqudfeuqux̃ − Dele
−uqux̃g if 0 , x̃ , b̃.

s109d

[A similar equation is solved in Ref.[12] with a misprint in
Eq. (4.20).]

In region III, whenx goes to +̀ , k̄sxd tends to the inverse
Debye lengthkD

−1, Eq. (5), and we rewrite the Fourier trans-
form of Eq. (28) as

H ] 2

] x̃ 2 − s1 + q2d − Usx̃dJf̃sx̃,x̃8;qd

= − 4pdsx̃ − x̃8d if x̃ . b̃, s110d

with

Usx̃d ;
4pbe2

esolvkD
2 o

a

Za
2frasxd − ra

Bg. s111d

The solution of the one-dimensional equation(110) can be
written in terms of the solutionsh of the associated “homo-
geneous” equation(with a zero in place of the Dirac distri-
bution) which is valid for −̀ ,x, +`. Indeed, the general
solution of Eq.(110) for x.b and x8.b is the following
sum: a linear combination of two independent solutionsh+

andh− plus a particular solutionfsing of Eq. (110), which is

singular whenx=x8 and which is calculated in terms ofh+

and h− by the so-called Wronskian method[36]. In the fol-
lowing, h+ sh−d is chosen to be a solution which vanishes
(diverges) whenx tends to +̀ . In the bulk,k̄sxd is a constant
equal to the inverse Debye lengthkD: h+ and h− can be
chosen to be equal to expf7xÎ1+q2g.Whenk̄ depends onx,
we look for the solutionsh+ and h− in terms of the bulk
solutions as

e7x̃Î1+q2
f1 + H±sx̃,q2dg. s112d

Moreover, the particular solutionsH+ andH− can be chosen

to vanish atx̃= b̃. As shown in Ref.[12], when x̃.b and
x̃8.b,

f̃sx̃,x̃8,qd = f̃singsx̃,x̃8,q2d + Zsuqude−sx̃+x̃8dÎ1+q2
f1 + H+sx̃,q2dg

3f1 + H+sx̃8,q2dg s113d

and

f̃singsx̃,x̃8,qd = −
4p

Wsq2d
e−ux̃−x̃8uÎ1+q2

f1 + H−
„infsx̃,x̃8d,q2

…g

3f1 + H+ssupsx̃,x̃8d,q2dg, s114d

where infsx̃, x̃8d fsupsx̃, x̃8dg is the infimum[supremum] of x̃

and x̃8. SinceH+ and H− vanish atx̃= b̃, ]H−/]x̃ux̃=b̃ is also
equal to zero, as can be checked from the formal solutions
given in next paragraph. Therefore the WronskianWsq2d
takes the simple form

Wsq2d = − 2Î1 + q2 + U ] H+sx̃,q2d
] x̃

U
x̃=b̃

. s115d

For the same reasons, the value ofZsuqud depends only on
]H+/]x̃ux̃=b̃. Indeed,Zsuqud is entirely determined by the ratio

of the continuity equations(105) and(106) obeyed byf̃ and

]f̃ /]x̃ at x̃= b̃, and the amplitudeBsx̃8 , uqud in region

0, x̃, b̃ [see Eq.(109)] disappears in the latter ratio.
As shown in Ref.[12], H+ can be represented by a formal

alternating series, which will be used in the following:

H+sx̃,q2d = − T +f1gsx̃;q2d + T +fT +f1ggsx̃;q2d − ¯ ,

s116d

where the operatorT + acting on a functionfsx̃d reads

T +ffgsx̃;q2d ; E
b̃

x̃

dv e2Î1+q2 vE
v

+`

dt e−2Î1+q2 tUstdfstd.

s117d

Similarly H−sx̃,q2d is equal to the series

H−sx̃,q2d = T −f1gsx̃;q2d + T −fT −f1ggsx̃;q2d + ¯ ,

s118d

with
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T −ffgsx̃;q2d ; E
b̃

x̃

dv e−2Î1+q2 vE
b̃

v

dt e2Î1+q2 tUstdfstd.

s119d

In the infinite-dilution and vanishing-coupling limit, den-
sity profiles become uniform andk̄2sxd tends tokD

2 . The cor-
responding screened potentialfs0d obeys the Debye equation
and satisfies the same boundary conditions as the bare Cou-
lomb potentialv. In other words,H+ andH− in expressions
(113) vanish for f̃s0dsx̃, x̃8 ,qd according to their definitions
(112), while the expression(115) is reduced to −2Î1+q2 for
Ws0dsq2d. Zs0dsuqud is then determined by the continuity equa-
tions (105) and (106). The result reads

fs0dsx,x8,yd = fsing
s0d sr − r 8d + kDE d2q

s2pd2e−iq·skDyd

3Zs0dsuqude−sx̃+x̃8dÎ1+q2
, s120d

where

Zs0dsuqud =
2p

Î1 + q2
e2b̃Î1+q21 − Dele

−2b̃uqusÎ1 + q2 + uqud2

sÎ1 + q2 + uqud2 − Dele
−2b̃uqu

.

s121d

The particular solutionfsing
s0d sr −r 8d that is singular whenr

=r 8 coincides with the bulk screened potential in Debye
theory:

fsing
s0d sr − r 8d = kDE d2q

s2pd2e−iq·skDyd 2p

Î1 + q2
e−ux̃−x̃8uÎ1+q2

= fDsr − r 8d, s122d

wherefD is written in Eq.(59).

B. Large-distance tail of the screened potential

When x.b and x8.b, fsx,x8 ,yd falls off as 1/y3, be-
cause of the boundary conditions at the interfacex=b. The
reason is the following. The appearance of an 1/y3 tail in the
large-y behavior of a functionfsyd corresponds to the exis-
tence of a term proportional touqu, which is not analytical in
the Cartesian components ofq, in the small-q expansion of
fsqd [37]. Functions different fromZsqd in f̃sx̃, x̃8 ,qd [see
Eq. (113)] prove to be functions ofq2, but the boundary

conditions atx̃= b̃ imply that, as well as the small-q expan-

sion off̃sx̃, x̃8 ,qd whenx̃, b̃ (andx̃. b̃) [see Eq.(109)], the
small-q expansion ofZsqd contains a term proportional to
uqu.

As shown in paper I, the 1/y3 tail of f takes the product
structure(3) where

D̄fsxd = −Îs− BZd
2p

e−x̃

kD
f1 + H+sx̃,q2 = 0dg. s123d

In Eq. (123) BZ is the coefficient of theuqu term in the small-
q expansion ofZsuqud:

Zsuqud = Zsq = 0d + BZuqu + Osuqu2d. s124d

We notice that, as shown in paper I, sum rules obeyed by

fsx,x8 ,yd imply thatD̄fsxd has the same sign for allx’s, and
the 1/y3 tail of fsx,x8 ,yd is repulsive at all distancesx and
x8 from the wall. In Eq.(123) the minus sign in front of the
square root isa priori arbitrary. It has been introduced, be-
cause in the infinite-dilution and vanishing-coupling limit

and in the case of a plain wallseW=esolvd, D̄fsxd is expected
to have the same sign as the dipoledsxd carried by the set
made of a positive unit charge and its screening cloud re-
pelled from the wall, andH+sx̃,q2=0d vanishes in this limit.

The large-distance behavior offsx,x8 ,yd at leading order,
fas s0d, is equal to the leading tailfs0d as of fs0d: fas s0d

=D̄f
s0dsxdD̄f

s0dsx8d /y3 with D̄f
s0d=D̄fs0d. Here D̄fs0dsxd is given

by Eq. (123), whereH+ vanishes andBZ is calculated for
fs0d; namely,BZ

s0d is equal to the coefficient of theuqu term in
the small-q expansion ofZfs0dsqd;Zs0dsqd. According to Eq.
(121),

Zs0dsuqud = 2pe2b̃F1 – 2
eW

esolv
uquG + Osuqu2d, s125d

and the resulting expression forD̄fs0d is written in Eq.(7).
The expression of the distancey!

s0dsxd at which the 1/y3 tail
in fs0d overcomes the exponential tails infs0d has been esti-
mated in paper I. In the case where the solvent is water and
where the dielectric wall is made of glass,eW/esolv,1/80
and y!

s0dsx=bd=7jD, y!
s0dsx=b+jDd=10jD, y!

s0dsx=b+3jDd
=15jD, andy!

s0dsx=b+5jDd=20jD.

C. Large-distance tail of the screened potential up to order«

1. Formal « expansion of the tail

Because of the nonuniformity of the density profiles in the
vicinity of the wall, f has an« expansion. More precisely,
the « expansion of the screened potentialf originating from
the« expansion of density profiles can be determined by Eq.
(113) from the « expansion of the functionsH+ and H−,
which themselves are derived from the formal series(116)
and (118), respectively.

According to Eq.(123) and with the notations of Eq.(4),
the first correctionD̄f

s1dsxd in the « expansion ofD̄fsxd is
obtained fromH+s1dsx̃,q2=0d and from the« expansion of
the coefficient ofuqu in the small-q expansion(124) of Zsuqud,
BZ=BZ

s0d+BZ
s1d+os«d. It reads

D̄f
s1dsxd = D̄f

s0dsxdfCf
s1d + Ḡf

exps1dsx̃dg, s126d

where the constantCf
s1d is equal to

Cf
s1d =

BZ
s1d

2BZ
s0d + lim

x̃→+`
H+s1dsx̃,q2 = 0d, s127d

and the functionḠf
exps1dsx̃d, which vanishes exponentially fast

when x̃ goes to infinity, is
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Ḡf
exps1dsx̃d = H+s1dsx̃,q2 = 0d − lim

x̃→+`
H+s1dsx̃,q2 = 0d.

s128d

If we write the « expansion ofZsuqud up to order« as
Zsuqud=Zs0dsuqud+Zs1dsuqud+os«d, then BZ

s0d=BZs0d and BZ
s1d

=BZs1d. By virtue of Eq.(125), BZs0d=−4pseW/esolvdexps2b̃d.
As already mentioned in Sec. V A,Zsuqud—and subsequently
BZ—is entirely determined from the expression of]H+/]x̃ at

x̃= b̃ by the ratio of the continuity equations(105) and(106).
When the« expansions ofZsuqud and]H+/]x̃ub̃ up to order«

are introduced in the expression(113) of f̃sx̃, x̃8 ,yd, the con-

tinuity equations atx̃= b̃ lead to

Zs1dsuqud = Zs0dsuqudU ] H+sx̃,q2d
] x̃

U
x̃=b̃

s1d 1

2Î1 + q2

3
3Î1 + q2 + uqu − Dele

−2b̃uqus3Î1 + q2 − uqud
Î1 + q2 + uqu − Dele

−2b̃uqusÎ1 + q2 − uqud
.

s129d

Then the coefficientBZs1d of the uqu term in theq expansion
of Zs1dsuqud is determined by using Eq.(125), and the expres-
sion of Cf

s1d is given by Eq.(127) where

BZ
s1d

2BZ
s0d = U ] H+sx̃,q2 = 0d

] x̃
U

x̃=b̃

s1d

. s130d

The expression ofH+s1dskDx,q2=0d is calculated from
oa Za

2rasxd as the term of order« in the « expansion of the
formal series(116). The first term in the latter series reads

T +f1gsx̃;q2d =E
b̃

x̃

dv e2vÎ1+q2E
v

+`

dt e−2 tÎ1+q2

3F k̄2st/kDd
kD

2 − 1G . s131d

As shown in the next section, the contribution tok̄2sxd from
each species varies over two length scales,be2/esolv (times
Za

2) and 1/kD. Therefore,T +f1gsx̃;qd, as well as all other
terms in the series(116), can be expanded in powers of the
ratio 2«=kDbe2/esolv of these two lengths. As shown in Ref.
[12], for an operatorT + associated with a function similar to
k̄2sxd, the « expansion ofT +f1gsx̃;qd starts at order« (for

anyvalue ofb̃), and the« expansions of the next terms in the
formal series(116) are of larger order in«. ThereforeH+s1d is
reduced to the contribution fromT +f1g

H+s1dsx̃,q2d = − T +f1gsx̃;qdus1d. s132d

Similarly, ]H+/]x̃u
x̃=b̃

s1d
=−]T +f1gsx̃;qd /]xus1d. We notice that

the latter derivative originates both from the derivative of
T +f1gsx̃;qdus1d and ofT +f1gsx̃;qdus2d, because the latter term
can be written as« times a function of the two argumentsx̃
and x̃/« (see Appendix C). Similar results hold forH−s1d,
with H−s1dsx̃,q2d=T −f1gsx̃;qdus1d.

2. « expansion of density profiles

The density profiles in the vicinity of a dielectric wall
have been calculated in the high-dilution and weak-coupling
regime in Refs.[12,13]. (The systematic approach in[12] is
based on the Mayer diagrammatics for the fugacity expan-
sions of density profiles. Resummations of Coulomb diver-
gences are performed along a scheme which is similar to—
but more complicated than—the procedure used in Sec. II B,
because of differences in the topological definition of Mayer
diagrams in the two cases.) Up to corrections of first order in
the coupling parameter«, for kDb andbe2/ sesolvbd fixed, the
density profile reads

rasxd = ra
B expF− Za

2 be2

esolv
Vim

B scsx;kDdGF1 − Za
2«L̄skDx;kDbd

− ZabeFs1dSx;kD,kDb,
be2

esolvb
D + Os«2dG . s133d

In Eq. (133), Os«2d is a short notation for terms of orders
written in Eq.(64) with G~«2/3.

More precisely, in Eq.(133) sZa
2e2/esolvdVim

B scsx;kDd,
called the bulk-screened self-image interaction in the follow-
ing, is the part of the screened self-energy that is reduced to
a merebulk Debye exponential screening of the bare self-
image interaction(24) due to the dielectric response of the
wall. For two charges separated by a distance 2x, the bulk
screening factor at leading order is exps−2kDxd. After multi-
plication byb,

b
sZaed2

esolv
Vim

B scsx;kDd = − Za
2Del

be2

esolv

e−2kDx

4x

= Za
2 f imSkDx,

be2

esolvx
D . s134d

The other part of the screened self-energy comes from the
deformation of the set made by a charge, its screening cloud
inside the electrolyte, and their images inside the wall, with
respect to the spherical symmetry of a charge and its screen-
ing cloud in the bulk. The deformation stems both from the
impenetrability of the wall(steric effect) and from the con-
tribution of its electrostatic response ifDelÞ0 (polarization
effect). When it is multiplied byb, one gets

b
sZaed2

esolv

1

2
kDL̄skDx;kDbd = Za

2«L̄skDx;kDbd. s135d

Fs1d is the electrostatic potential created by the charge-
density profile at first order in«. It is given by

Fs1dSx;kD,kDb,
be2

esolvb
D =

e

esolv
E

b

+`

dx8E dy

3fs0dsx,x8,ydo
g

Zgrg
B

3expF− Zg
2 be2

esolv
Vim

B scsx8;kDdG
3h1 − Zg

2«L̄skDx8;kDbdjus1d,

s136d
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wherefs0dsx,x8 ,yd is written in Eq.(120) andus1d means that
the integral must be calculated at first order in« with kDb
andbe2/ sesolvbd kept fixed. As a consequence,

Za beFs1dSx;kD,kDb,
be2

esolvb
D = Za« fFSkDx;kDb,

be2

esolvb
D .

s137d

L̄ and Fs1d are functions ofx which are bounded in the in-
terval 0,x, +` and which decay exponentially fast over a
few kD

−1’s when x goes to +̀ . In the case of an electrolyte
confined between two walls, the density profile exhibits an
analogous structure[38].

3. Explicit results in the limit kDb™1 at fixed be2/ „esolvb…

Density profiles have been explicitly calculated at leading
order in a double expansion in« andkDb with be2/ sesolvbd
fixed in Ref. [13]. Indeed, in regimes wherekDb!1 the
density profile written in Eq.(133) can be explicitly calcu-
lated at leading order by considering the limit of

«L̄skDx;kDbd and of« fF(kDx;kDb,be2/ sesolvbd) whenkDb
vanishes at fixedbe2/ sesolvbd and by keeping only the terms
of order« lnskDbd and«. The corresponding expressions are
valid in regime(1) where the temperature is fixed[see Eq.
(12)]. In regime(2) [see Eq.(13)], the temperature goes go
infinity, and the density profiles are obtained from those of
regime (1) by taking the limit wherebe2/ sesolvbd vanishes
while kDb is kept fixed.

We notice that the corresponding results enable one to
calculate the surface tension of the electrolyte-wall interface

at leading order in« andkDb at fixedbe2/ sesolvbd~« / b̃ [39].
From the generic expression, one retrieves results already
known in some special cases.

In regime(1), kDb vanishes at fixedbe2/ sesolvbd, and the
explicit expressions of functions in Eq.(133) are

L̄sx̃;b̃d = s1 − Del
2 dE

1

`

dt
e−2tx̃

st + Ît2 − 1d2 − Del

+ Osb̃d

s138d

and

− beFs1dSx;kD,b̃,
be2

esolvb
D

= «HS3

S2
M̄sx̃d +

Del

2
FS3

S2
SC +

ln 3

2
+ ln b̃D

+
og

Zg
3rg

Bgg

S2

Ge−x̃ +
Del

4

S3

S2
e−2x̃S−sx̃dJ + Os«b̃d,

s139d

whereOs«b̃d stands for a term of order«b̃. By virtue of Eq.
(136), the electrostatic potential profileFs1dsxd at first order

in « arises from the screened self-energy: the term withM̄
comes from the deformation of screening clouds with respect

to the bulk spherical symmetry, which is described byL̄, Eq.

(135), and the other terms originate from the bulk-screened
self-image interactionVim

B scsxd, Eq. (134). If Del=0 Fs1dsxd is

reduced to«sS3/S2dM̄sx̃d. In Eq. (139),

M̄sx̃d =E
1

`

dt
e−2tx̃ − 2te−x̃

1 − s2td2

1 − Del
2

st + Ît2 − 1d2 − Del

, s140d

andC is the Euler constant,

gg ; gSDel

4
Zg

2 be2

esolvb
D , s141d

where

gsud ; − 1 +
eu − 1

u
−E

0

u

dt
et − 1

t
. s142d

S− is defined by

S±sud ; e3uEis− 3ud ± euEis− ud, s143d

where Eis−xd is the exponential-integral function: forx.0,

Eis− xd ; −E
x

+`

dt
e−t

t
= C + ln x +E

0

x

dt
e−t − 1

t
.

s144d

S−sud decays proportionally to 1/u whenu goes to`, since
Eis−ud behaves as exps−ud /u for largeu.

We notice that, in the calculation of the part inFs1dsxd that
comes from the bulk-screened image contributionVim

B sc, a
key ingredient is the decomposition(C13) combined with the
expression of the exponential-integral function(144). Here
gsud arises because

E
b̃

+`

dvFesh/vd − 1 −
h

v
G = − hgSh

b̃
D . s145d

We point out thatgsu=0d=0.
In regime(2) [see Eq.(13)], be2/ sesolvbd vanishes, what-

ever the sign ofDel is, becausesbe2/esolvd!b!jD. In this

regime,« vanishes faster thanb̃, and« / b̃ must be set to zero

while b̃ is kept fixed in lnb̃+ggs« / b̃d; then, the latter sum is

reduced to lnb̃. The result is the same as if the exponential
involving the bulk-screened self-image interactionVim

B scsx8d
in the expression(139) Fs1dsxd had been linearized at all
distancesx8, as is the case in the second integral in decom-
position (C13). In the following, we write expressions only

for the more general regime where« andb̃ vanish with their
ratio kept fixed.

In regime(1) [see Eq.(12)], be2/ sesolvbd is finite. For an
electrostatically attractive wallsDel.0d, we cannot consider
the limit b! sbe2/esolvd!jD, whereDelbe2/ sesolvbd tends to
+`: there is an irreducible dependence onb. On the contrary,
for an electrostatically repulsive wallsDel,0d, we can take
the previous limit, whereDelbe2/ sesolvbd goes to −̀ . In this

limit, b̃ vanishes faster than«, and we must setkDb=0 at

fixed « in the term lnb̃+ggs« / b̃d in Eq. (139); then, this term
becomes equal to lnsuDeluZg

2« /2d+C−1.

J.-N. AQUA AND F. CORNU PHYSICAL REVIEW E70, 056117(2004)

056117-20



From the expression of the density profiles up to order«

in the vanishing-b̃ limit, we explicitly calculate the

vanishing-b̃ limit of the term D̄f
s1dsxd of order« in the coef-

ficient D̄fsxd. The formal expression ofD̄f
s1dsxd has been de-

rived in Sec. V C 1. The calculations of the zero-b̃ limits of

H+s1dsx̃,q2=0d and]H+/]x̃us1dsb̃,q2=0d are performed in Ap-

pendix C.Cf
s1d andḠf

exps1dsx̃d in Eq. (126) are given by

Cf
s1d

«
=

Del

2
FS4

S2
SC +

3

2
ln 2 + lnb̃D +

og
rg

BZg
4 gg

S2

G s146ad

+
S4

S2
E

1

`

dt
1 − Del

2

st + Ît2 − 1d2 − Del
F t + 1/2

2tst + 1dG s146bd

+
1

4
SS3

S2
D2HE

1

`

dt
1 − Del

2

st + Ît2 − 1d2 − Del

1

t2 − 1/4
F t + 1/2

2tst + 1d
−

4

3
tGJ s146cd

−
Del

3

S3

S2

Fog
rg

BZg
3 gg

S2
+

S3

S2
SC +

ln 3

2
+ ln b̃DG s146dd

+
Del

4
SS3

S2
D2F2

3
ln 2 − ln 3G s146ed

and

Ḡf
exps1dsx̃d

«
=

Del

4

S4

S2
he2x̃Eis− 4x̃d − Eis− 2x̃dj s147ad

−
S4

S2
E

1

`

dt
1 − Del

2

st + Ît2 − 1d2 − Del

e−2tx̃

4tst + 1d
s147bd

+
1

4
SS3

S2
D2HE

1

`

dt
1 − Del

2

st + Ît2 − 1d2 − Del

1

t2 − 1/4
F2

3
te−x̃ −

e−2tx̃

4tst + 1dGJ s147cd

+
Del

6

S3

S2

Fog
rg

BZg
3 gg

S2
+

S3

S2
SC +

ln 3

2
+ ln b̃DGe−x̃ s147dd

+
Del

4
SS3

S2
D2F1

3
e2x̃Eis− 4x̃d + Eis− 2x̃d −

1

3
e−x̃Eis− x̃d − ex̃Eis− 3x̃dG . s147ed
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The expressions(146a) and (147a) arise from the contribu-
tion of the screened self-image interactionVim

B sc, Eq. (134),
to the density profile(133). The terms(146b) and (147b)
originate from the deformation of screening clouds described

by the functionL̄ given in Eq.(138), which does not vanish
even wheneW=esolv. The three last lines inCf

s1d /« and

Ḡf
exps1dsx̃d /« come from the contribution of the electrostatic

potential Fsxd to the density profile. More precisely, Eqs.
(146c), (147c), (146d), (147d), (146e), and (147e) originate

from the functionsM̄sx̃d, exps−x̃d, and exps−2x̃dS−sx̃d, in Eq.
(139), respectively.

VI. CORRELATIONS ALONG THE WALL

A. Tails at large distances along the wall

The Ursell functionhaa8 cannot decay faster than 1/y3.
Indeed, by an argument based on linear-response theory and
screening in macroscopic electrostatics, the correlation be-
tween global surface-charge densities at points separated by
a distancey is shown to decay as 1/y3 with a universal
negative amplitude[20]: faa8 in the amplitude −bfaa8 of the
1/y3 tail of haa8 obeys sum rule(41). The latter sum rule
holds whether all species have the same closest approach
distanceba to the wall or not. We recall that it is a conse-
quence of external screening, as sum rule(38).

On the other hand, as a consequence of the 1/y3 decay of
the screened potentialf, according to Eqs.(30) and(31), the
bondsFcc and FR in resummed Mayer diagrams behave as
1/y3 and 1/y6, respectively, at large distancesy. Sincehaa8
does not fall off faster than 1/y3, no compensation mecha-
nism destroys the 1/y3 tail arising from the slowest one
among the algebraic bonds in the Mayer diagrammatics.
Thereore, in a regime where only a finite number of Mayer
diagrams—or only some infinite class of diagrams—
contribute to the large-distance behavior ofhaa8, haa8 indeed
decays as 1/y3. This is the case in the dilute regime studied
hereafter.[We notice that if, in some regime, the summation
of some infinite series of subdiagrams led to an infinite con-
tribution to faa8sx,x8d, thenhaa8 would fall off more slowly
than 1/y3. However, sincehaa8 is integrable by definition, it
cannot decay more slowly than 1/y2.]

As shown in paper I, the large-y behavior ofhaa8 along
the wall is conveniently studied from the decomposition de-
scribed by Eqs.(33)–(53), as in the case of bulk correlations.
In the latter graphic representation ofhaa8, the topology of
diagrams involved inI implies that the bondI decays alge-
braically faster thanFcc at large distancesy (see Sec. II C).
Moreover, as exhibited in Figs. 1–3, all graphs inhcc, h−c,
hc−, andh−− are chain graphs, and because of the translation
invariance in the direction parallel to the wall, the chain
graphs can be seen as multiple convolutions with respect to
the variabley. Therefore, every term, exceptI, in the graphic
representation ofhcc, h−c, hc−, andh−− has 1/y3 tails arising
from all its Fcc bonds. The 1/y3 tail of every graph inhcc,
hc−, h−c, andh−− (see Figs. 1–3) is a sum of contributions,
each of which is determined by replacing one of the bonds
Fcc by its 1/y3 behavior at largey, while the other part of the
graph is replaced by its Fourier transform at the valueq=0.

Eventually, as shown in paper I, when all species have the
same closest approach distance to the wall,

haa8sx,x8,yd ,
y→+`

− b
DasxdDa8sx8d

y3 s148d

and

Dasxd =
e

Îesolv

hZafD̄fsxd + C̄ c−sxdg + C a
−−sxdj, s149d

whereC a
−−sxd and C̄ c−sxd are related tohaa8

−− and haa8
c− , re-

spectively, by

C a
−−sxd ; E dx9o

g9

rg9sx9dZg9D̄fsx9dhag9
−− sx,x9,kDq = 0d

s150d

and

ZaC̄ c−sxd ; E dx9o
g9

rg9sx9dZg9D̄fsx9dhag9
c− sx,x9,kDq = 0d.

s151d

An advantage of the resummed Mayer diagrammatic rep-

resentation is that the contribution from every diagramP̃ can
be associated with some physical effect. For instance, dia-

gram P̃a made of the single bondFcc describes Coulomb
screening at leading order, and the sum of the two diagrams
made of bondsfFccg2/2 andFRT, respectively, contains the

short-distance repulsion, while diagramsP̃b, P̃b* , and P̃c
shown in Figs. 8 and 9 involve many-body corrections to the

mean-field contribution fromP̃a.
In order to trace back the physical effects, we have to

identify the contributions toDasxdDa8sx8d from the various

diagramsP̃ defined in Sec. III B. In other words, we have to
recognize in Eqs.(148) and(149) the tails ofhaa8

cc , haa8
c− , haa8

−c ,
andhaa8

−− , the sum of which is equal tohaa8. As shown in the
Appendix of paper I, the latter tails read

haa8
cc sx,x8,yd ,

y→+`
−

be2

esolv
ZaZa8fD̄fsxd + C̄c−sxdgfD̄fsx8d

+ C̄c−sx8dg
1

y3 , s152d

haa8
c− sx,x8,yd ,

y→+`
−

be2

esolv
ZafD̄fsxd + C̄c−sxdgCa8

−−sx8d
1

y3 ,

s153d

haa8
−− sx,x8,yd ,

y→+`
−

be2

esolv
C a

−−sxdC a8
−−sx8d

1

y3 . s154d

B. Sum rule for the effective dipoleDa„x…

According to Eq.(148), faa8sx,x8d=DasxdDa8sx8d so that
the sum rule(41) for faa8sx,x8d can be rewritten as
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E
0

+`

dxo
a

earasxdDasxd =Î eW

8p2b2 . s155d

Similarly to what happens for the internal-screening rule
(35), the latter external-screening sum rule can be derived
from the decomposition(149), the integral relation(50) be-
tweenhc− andh−−, and two sum rules obeyed byf—namely,

Eq. (47) and a sum rule forD̄fsxd in the ffsx,x8d /y3 tail of
fsx,x8 ,yd:

E
0

+`

dx k̄2sxdD̄fsxd =Î2eW

esolv
. s156d

The latter equation arises from the sum rule(48) obeyed by
the amplitudeffsx,x8d (derived in paper I) and from the fact

that ffsx,x8d takes the factorized formD̄fsxdD̄fsx8d in the
case where all species have the same closest approach dis-
tanceb to the wall.

More precisely, the derivation of Eq.(155) is as follows.
The integral relation(50) betweenhc− andh−− and sum rule

(47) imply that the contributions fromC a
−−sxd andZaC̄c−sxd

to the integral in Eq.(155) cancel each other. On the other
hand, sum rule(156) ensures that the contribution from

ZaD̄fsxd to the integral in Eq.(155) is already equal to the
constant in the RHS of the equation. In other words, the bond

Fcc—namely, diagramP̃a—already fulfills sum rule(155).
As a consequence, if some diagrams are to be kept for

their contributions toCa
−−sxd in some dilute regime, then the

corresponding diagrams “dressed” with a bondFcc must also

be retained inZaC̄c−sxd in order to ensure that screening rule
(155) is still obeyed.

In the case of a symmetric electrolyte made of two species
with opposite charges +Ze and −Ze and with the same radii,
oa rasxdhaa8sr ,r 8d decays faster thanhaa8sr ,r 8d in the y di-
rection, similarly to what happens in the bulk(see Sec.
IV E). Indeed, symmetries enforce that the local neutrality is
satisfied not only in the bulk, wherer+

B=r−
B, but also in the

vicinity of the wall, wherer+sxd=r−sxd. As a consequence,
by virtue of Eq. (149), r+sxdD+sxd+r−sxdD−sxd
=se/Îesolvdoa rasxdCa

−−sxd. Symmetries also imply thath++
−−

=h−−
−− andh+−

−−=h−+
−−, and the definition(150) of Ca

−−sxd yields
r+sxdD+sxd+r−sxdD−sxd=0. Subsequently, r+h+a8+r−h−a8
decays faster than 1/y3. The latter property has been exhib-
ited in Eq.(3.4) of Ref. [40], where the density-density cor-
relation oa,a8 rasxdra8sx8dhaa8sr ,r 8d in the infinite-dilution
and vanishing-coupling limit(whererasxd=ra

B) is shown to
decay as expf−2kDsx+x8dg /y6.

C. « expansions

1. Method

In the general formula(149) for Dasxd, ZaC̄c−sxd, as well
asCa

−−sxd, is a series of functions, each of which decays as a
polynomial inx times exps−kDxd, plus functions which van-

ish faster[see the general structure(4) of D̄fsxd in the Intro-
duction]. However, since there is no translational invariance

in the direction perpendicular to the wall, the seriesCa
−−sxd

andZaC̄c−sxd cannot be expressed as sums of geometric se-
ries that could be calculated by such a simple formula as Eq.
(77). Therefore, the expression ofsZa

eff W/kdexpf−ksx−bdg in
the large-distance behavior(10) of Dasxd cannot be calcu-
lated by the mere determination of the pole of an analytic
function and the calculation of a residue.

Though the loss of translational invariance in the direction
perpendicular to the wall prevents one from performing sys-
tematic resummations,Dasxd can be determined up to order
« at any distancex [in the sense of the comment after Eq.
(89)] by the alternative procedure derived for bulk correla-
tions in Sec. IV D. In a first step, the correction of order« in
the screening lengthk−1 of the leading exponential decay of
Dasxd has to be calculated by the partial resummation
mechanism whose validity has been checked in the case of
bulk correlations(see Sec. IV D 2). In a second step, the
amplitude factor inDasxd up to order« is determined as
follows. First, we calculateDa

s1dsxd in a form analogous to
Eq. (89), which arises from the contributions of only a few
diagrams whose amplitude is of order« and which decay at
largex as expf−kDsx−bdg times a possible linear term inx; in
a second step, we check that the coefficient of thesx
−bdexpf−kDsx−bdg term, which arises from the second dia-

gramP̃c in hcc, indeed coincides with the opposite of the first
correction to the screening length in the direction perpen-
dicular to the wall, which has already been calculated inde-
pendently.

The « expansions ofP̃ diagrams are more complicated
than in the case of the bulk, because the screened potentialf
also has an« expansion when the vicinity of the wall is
studied. The first correction tofs0d yields D̄f

s1dsxd in the ex-
pression(149) of Da

s1dsxd. The leading term in the« expan-

sion of Ca
−−sxd or ZaC̄c−sxd is obtained as follows: densities

rg’s are replaced by their bulk valuesrg
B’s and both functions

fsx,x8 ,q=0d and Isx,x8 ,q=0d are replaced by their
leading values fs0dsx,x8 ,q=0d and I s1dsx,x8 ,q=0d
=s1/2dfFc cs0dg2sx,x8 ,q=0d, respectively. As in the bulk
case, only the subseries shown in Figs. 4–6 do contribute to
Da

s1dsxd.

2. Renormalization of the screening length

We recall that, in the bulk case, the leading tail at order«q

in the « expansion of the large-distance behaviorhaa8
ccB as of

haa8
ccB around its expf−kDrg / r limit decays as rq times

expf−kDrg / r, and the sumhaa8
ccB as* of the latter tails decays as

expf−skD+dkB
* drg, with dkB

* =dkB
s1d (see Sec. IV D 2). In the

vicinity of the wall, the contribution fromhaa8
cc to Dasxd is

equal toZafD̄fsxd+C̄c−sxdg according to Eq.(152). As shown

in Appendix D, in the « expansion of ZaC̄c−sxd, at
order «q the leading term at largex is proportional to
sx−bdq expf−kDsx−bdg. The sum overq of the latter leading
terms is proportional to expf−skD+dk*dsx−bdg with

dk* = dkB
s1d. s157d

According to the discussion of Sec. IV D 2, the latter partial
resummation determines the correctiondks1d of order« to kD
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in the x direction, dk* =dks1d. According to Eq.(157), the
correctiondks1d to the screening length in the direction per-
pendicular to the wall coincides at first order in« with the
value found for bulk correlations:

dks1d = dkB
s1d. s158d

3. Renormalization of the amplitude of Da„x…

According to the general method summarized above, the
amplitude ofDa

s1dsxd can be determined from only a few dia-

grams inCa
−−sxd andZaC̄c−sxd. Before turning to the explicit

calculations in the regimeb̃!1, we interpret the various
contributions inDasxdDa8sx8d /y3 in terms of diagrams which
are representative of physical effects. The diagrams that are
involved in the determination of the 1/y3 tail of haa8sx,x8 ,yd
up to order in« are the same as in the case of the bulk.

DiagramP̃a in Fig. 7 describes the leading screening effect
and therefore gives the zeroth-order contribution

Da
s0dsxdDa8

s0dsx8d =
e2

esolv
ZaZa8D̄f

s0dsxdD̄f
s0dsx8d. s159d

Contrary to the bulk case, because of the nonuniformity of
the density profiles in the vicinity of the wall,f has an«
expansion, and the first correctionfs1d to fs0d gives a correc-

tion of order« in the 1/y3 tail of P̃a.The contribution from

diagramP̃a to the correction of order«,

fDasxdDa8sx8dgs1d = Da
s0dsxdDa8

s1dsx8d + Da
s1dsxdDa8

s0dsx8d,

s160d

reads

e2

esolv
ZaZa8fD̄f

s0dsxdD̄f
s1dsx8d + D̄f

s1dsxdD̄f
s0dsx8dg. s161d

The other contributions to Eq.(160) arise from diagramsP̃b,

P̃b* , and P̃c, shown in Figs. 8 and 9, where fixed charges

interact through screened interactions via one or two other
charges.(The « expansions of the contributions from the
latter diagrams to the 1/y3 tail of haa8sxd start at the order«,
because they all involve a bonds1/2dfFccg2.) The contribu-

tion to Eq.(160) from diagramP̃b reads

e2

esolv
ZaD̄f

s0dsxdC̄a8
−−s1dsx8d, s162d

while P̃b* leads to a symmetric term in the variablesx and

x8, andP̃c yields

e2

esolv
ZaZa8fC̄a

−cs1dsxdD̄f
s0dsx8d + D̄f

s0dsxdC̄a8
−cs1dsx8dg.

s163d

D. Explicit results in the limit kD b™1 at fixed be2/ „esolvb…

1. Separate contributions

In the limit b̃!1, Da
s0dsxd is given by Eq.(7) where the

expskDbd term disappears in the expression ofD̄f
s0dsxd. Here

Da
s1dsxd is calculated from formula(149). D̄f

s1dsxd has been

studied in Sec. V, and in the limitb̃!1, D̄f
s1dsxd is given by

Eqs. (126), (146), and (147). The other contributions

C a
−−s1dsxd and ZaC̄c−s1dsxd are obtained by replacingrg9sx9d

by rg9
B , f by fs0d, h−− and hc− by the graphs with oneI in

their series representations, andI by fF ccs0dg2/2 in the ex-

pressions(150) and (151) for Ca
−−sxd and ZaC̄c−sxd, respec-

tively. The contribution fromCa
−−sxd is

Ca
−−s1dsxd = D̄f

s0dsxdZa
2fB̄fbg

s1d + Ḡfbg
exps1dsx̃dg, s164d

where

B̄fbg
s1d = «

ln 3

2

S3

S2
s165d

and

Ḡfbg
exps1dsx̃d = «

S3

S2

1

2H− e−x̃S−sx̃d +E
1

`

dt
es1–2tdx̃

ft + Ît2 − 1 −Delst − Ît2 − 1dg2F2s1 − Deld2

+
s1 − Deld2s1 – 2e−x̃d − 8Delst2 − 1ds1 − e−x̃d

t + 1/2
GJ , s166d

with S−sx̃d defined in Eq.(143). The contribution fromZaC̄c−sxd reads

ZaC̄c−s1dsxd = ZaD̄f
s0dsxdF− «

ln 3

4
SS3

S2
D2

x̃ + Bfcg
s1d + Gfcg

exps1dsx̃dG . s167d

In Eq. (167) the coefficient of the linear termx̃ coincides with −dkB
s1d given by Eq.(86), while

Bfcg
s1d = «

1

2
F1

3
−

ln 3

2
−

acsDeld
2

GSS3

S2
D2

, s168d

with
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acsDeld ; E
1

`

dt
1

ft + Ît2 − 1 −Delst − Ît2 − 1dg2F s1 − Deld2f16t4st + 1/2d − 1g
8tst − 1/2d2st + 1/2d2st + 1d

−
Delst − 1ds4t2 + 2t + 1d

tst − 1/2dst + 1/2d2 G . s169d

If esolv/eW=80, ac=1.2, and ifesolv=eW, ac=0.84. HereGfcg
exps1dsx̃d is the exponentially decaying function:

Gfcg
exps1dsx̃d = −

«

4
SS3

S2
D2H4

3
e−x̃ +E

1

`

dt
es1–2tdx̃

ft + Ît2 − 1 −Delst − Ît2 − 1dg2

4Delst2 − 1d − s1 − Deld2st + 1d
st − 1/2dst + 1/2d2 + e−x̃f− S−sx̃d + x̃S+sx̃dg

+E
1

`

dt
e−2tx̃fs1 − Deld2 − 4Delst2 − 1dg

tst + 1dst + 1/2dft + Ît2 − 1 −Delst − Ît2 − 1dg2J . s170d

2. Global results

Eventually, the sum of the various contributions at order«
reads

Da
s1dsxd = F− «

ln 3

4
SS3

S2
D2

x̃ + Ba
s1d + Ga

exps1dsx̃dGDa
s0dsxd,

s171d

whereBa
s1d is the sum of the various constants:

Ba
s1d ; Cf

s1d + ZaB̄fbg
s1d + Bfcg

s1d s172d

and

Ga
exps1dsx̃d ; Gfag

exps1dsx̃d + ZaḠfbg
exps1dsx̃d + Gfcg

exps1dsx̃d.

s173d

Ga
exps1dsx̃d is a bounded function of order« which decays to

zero at least as exps−x̃d when x̃ goes to infinity. The coeffi-
cient of the terms−xdexpf−kDxg in Da

s1dsxd indeed coincides
with the first-order correctiondks1d to the screening length in
the direction perpendicular to the wall calculated in Appen-
dix D with the result(158). Therefore the« expansion of
Dasxd can be rewritten in terms of the explicit expression(7)
of Da

s0dsxd as

Dasxd = −Î2eW

esolv

e
Îesolv

Za

kD

3he−skB+dkB
s1ddxf1 + Ba

s1d + Ga
exps1dsx̃dg + os«dj.

s174d

The effective dipole associated with a charge at leading
order in «, Da

s0dsxd, is proportional to the mere exponential
function exps−kDxd. Equation(174) shows that, when first-
order corrections are taken into account, the effective dipole
varies with the distance from the wall in a more complicated
way described byGa

exps1dsx̃d, the value of which is derived
from Eq. (173). The sign ofBa

s1d+Ga
exps1dsx̃d may vary with

the distancex from the wall and depends drastically upon the
composition of the electrolyte, the value of the closest ap-
proach distanceb, and the relative dielectric constant of the
wall with respect to that of the solvent.

Since Ga
exps1dsx̃d tends to zero at largex, the effective

charge near the wallZa
eff W, defined from the dipolar interac-

tion by Eq.(10), reads

Za
eff W = ZaF1 + Ba

s1d +
dkB

s1d

kB
+ os«dG , s175d

where the termdkB
s1d /kB arises from the 1/k coefficient in

the definition(10). By virtue of Eqs.(172) and (86),

Za
eff W = ZaH1 + Cf

s1d + Za«
ln 3

2

S3

S2
− «FacsDeld

4
−

1

6
GSS3

S2
D2

+ os«dJ . s176d

As exhibited by their diagrammatic origins, the various terms
in Za

eff W arise both from the nonuniformity of the density

profiles described by diagramP̃a at order« and from the
leading screened interactions via one or two other charges

that appear in diagramsP̃b andP̃b* (Fig. 8) and in diagram

P̃c (Fig. 9). If esolv.eW, acsDeld. s2/3d and the four-body
effective interactions tend to decreaseZa

eff W with respect to
its bulk value.

The comparison of the effective chargeZa
eff W near the

wall with its valueZa
eff B in the bulk given in Eq.(87) leads

to

Za
eff W

Za
eff B = 1 +Ba

s1d − Aa
s1d +

dkB
s1d

kB
+ os«d, s177d

where

Ba
s1d − Aa

s1d = Cf
s1d + Bfcg

s1d − Afcg
s1d. s178d

Indeed, according to Eqs.(99) and(165), B̄fbg
s1d=Āfbg

s1d: the con-

tributions in the bulk and along the wall from diagramP̃b
compensate each other and there is no term proportional to
Za

2 in the ratio Za
eff W/Za

eff B. The final result is written in
Eq. (18).

VII. CONCLUSION

In the present paper we have introduced the renormalized
chargeZa

eff W associated with the large-distance dipolar-like
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effective interaction between two charges along an insulating
wall, when all charges have the same closest approach dis-
tance to the wall. This charge has been explicitly calculated
up to order« in some limit of infinite dilution and weak
coupling when the wall is neutral.

The renormalized charge could also be calculated in the
case of an insulating wall with an external surface charge on
it, as is the case for instance when the wall mimicks a cell
membrane. Indeed, the general method presently devised for
the calculation ofZa

eff W holds for any density profiles when
the « expansions of the latter are known. On the other hand,
such« expansions could be obtained by a generalization of
the method presented in Refs.[12,13], where the external
one-body potential created by the surface charge would be
incorporated in the fugacity.

APPENDIX A

The present appendix is devoted to the determination of
the large-distance behaviors of exponentially decaying func-
tions, such as those which appear in the resummed Mayer
diagrammatics for bulk correlations. When a function
fsr d is rotationally invariant, its Fourier transformfskd
;edr expf−ik ·r g fsr d depends only on the modulusk of k.
On the other hand, whenfsr d decays faster than any inverse
power law of the modulusr of r , then its Fourier transform is
an analytic function of the components ofk. When both
conditions arefulfilled byfsr d, the k expansion offskd con-
tains only powers ofk2. Then the analytic continuation of
fskd= fskd to negative values ofk is an even function ofk
and its inverse Fourier transform can be rewritten as the fol-
lowing integral:

fsrd = −
i

4p2

1

r
E

−`

+`

dk eikrkfskd, sA1d

wherefskd is a derivable function ofk. The one-dimensional
integral in Eq. (A1) can be performed by the method of
contour integrals in the complex planek=k8+ ik9. [We notice
that, whenfsr d decays algebraically, then the small-k expan-
sion of fskd contains nonanalytic terms involving either lnuk u
or odd powers ofuk u [37], and the present method does not
hold.]

The slowest exponential tailf slowsrd of f, defined at the
begining of Sec. IV, is determined by the singular point of
fskd that is the closest one to the real axisk9=0 in the upper
complex half-plane. If the latter singular point is a polek0, its
contribution tofsrd is given by the residue theorem

f slowsrd =
1

2pr
Resfeikrkfskdgk=k0

. sA2d

In the present paper we consider functionsfskd that contain
no exponential term and such thatk0 is purely imaginary,
k0= ikD. In that case the inverse decay length off slowsrd is
equal to the imaginary part of the polek0. [If there were two
poles with the same imaginary part and opposite real parts,
then f slowsrd would be an oscillatory exponential tail.]

Moreover, whenk0= ikD is a pole of rank 1,f slowsrd is a
pure exps−kDrd / r function, whereas ifk0= ikD is a pole of

rank m, fslowsrd is equal to exps−kDrd / r times a polynomial
in r of rank m−1. For instance, iff is equal to the convolu-
tion fDpffDg2, the complete contour integral which deter-
mines the RHS of Eq.(A1) gives the expression offDpffDg2

at any distancer. According to Eqs.(72) and(81), fD has a
pole atk= ikD, while ffDg2 has a cut that starts atk=2ikD

and goes along the imaginary axis up to +i`. As a conse-
quence,

Fe−kDr

r
*Se−kDr

r
D2Gsrd = 2p ln 3

e−kDr

kDr
+

e−2kDr

kDr
FbskDrd,

sA3d

where the first term comes from the residue of expfikrgkfskd
at the polek= ikD of fDskd, while the second term arises
from the cut in the definition offfD

2 gskd. At large distances
the first term falls off asfD and the second term asffD

2 g,
becauseFbskDrd decays as a constant times 1/skDrd. Indeed,

FbskDrd ; − 8pE
0

+`

dt
e−2kDr t

4s1 + td2 − 1
= − 2pfe3kDrEis− 3kDrd

− ekDrEis− kDrdg, sA4d

where Eis−xd is the exponential-integral function defined in
Eq. (144). (The large-distance behavior of the convolution
fDpffDg2 is indeed dominated by the pole offDskd at k
= ikD and not by the branch point of the Fourier transform of
ffDsrdg2 at k=2ikD.) In the case offDpffDg2, the corre-
sponding slowest exponential tailf slowsrd is exactly propor-
tional to fD=expf−kDrg / r, since the pole atk0= ikD is of
rank 1.

For the convolutionfDpffDg2pfD, ffDskdg2 has a pole of
rank 2, and a calculation similar to the previous one gives

Fe−kDr

r
pSe−kDr

r
D2

p
e−kDr

r
Gsrd

= 16p2 1

kD
2 F ln 3

4
kDr + S ln 3

4
−

1

3
DG

3
e−kDr

kDr
+

e−2kDr

kDr
FcskDrd, sA5d

whereFcskDrd decays as a constant times 1/skDrd, since

FcskDrd ; 32p2 1

kD
2 E

0

+`

dt
e−2kDrt

f4s1 + td2 − 1g2 . sA6d

The slowest exponential tailf slowsrd of fsrd=fDpffDg2pfD

is given by the pole offskd atk= ikD, which is of order 2, and
f slowsrd is equal to expf−kDrg / r times a polynomial inr of
rank 1: it is not merely equal tofD.

APPENDIX B

In the present appendix we study the« expansion of the
large-distance behaviorhaa8

as . The meaning of« expansions is
detailed in Sec. III C.

First, we calculate the expression of the slowest exponen-
tial tail of the graph fm with exactly m bonds Fcc in the
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definitions(51)–(53) of f =hccB, hc−B, h−cB, or h−−B. (For the
sake of simplicity we omit the indices for charge species.)
The slowest exponential tail has been defined at the begin-
ning of Sec. IV. ForhccB andhc−B, f1 corresponds to the first
graph in Figs. 1 and 2, respectively, whereas, in the case of
h−−B, f1 corresponds to the second graph in Fig. 3. SinceFcc

decays slower thanI (at least in the high-dilution and weak-
coupling regime),

f1skd =
4p

k2 + kD
2 gskd, sB1d

where the poles or branch points ofgskd in the upper com-
plex half-plane are more distant from the real axis than the
pole k= ikD of 1/sk2+kD

2 d. [For hccB, gskd=1, while, for

hc−B, gskd is given by Eq.(75) with Īskd=0 and, forh−−B,
gskd is given by the second term in the RHS of Eq.(76) with

Īskd=0.] Subsequently, the slowest exponential tailf 1
slowsrd

of f1srd is obtained from Eq.(A2) by calculating the residue
of expfikrgkf1skd at k= ikD, with the result

f 1
slowsrd =

1

2pr
feikrkf1skdsk − ikDdgk=ikD

. sB2d

f 1
slowsrd takes the form

f 1
slowsrd =

e−kDr

r
F1,0. sB3d

According to definitions(51)–(53) and (73), the Fourier
transform of the graphfm with m bondsFccsmù1d reads

fmskd = F− 4pĪskd
k2 + kD

2 Gm−1

f1skd. sB4d

According to the argument leading to Eq.(B2), k= ikD is the
singular point offmskd that is the closest one to the real axis
in the complex upper-half plane, and the slowest exponential
tail f m

slowsrd of fmsrd is given by the residue of
expfikrgkfmskd / s2pd at k= ikD according to Eq.(A2). Since
k= ikD is a simple pole forf1, it is a multiple pole of rankm
for fm, and the latter residue is equal to

1

2p

1

sm− 1d!
UF ] m−1

] km−1feikrkfmskdsk − ikDdmgGU
k=ikD

.

sB5d

The expression(B5) is equal to expf−kDrg times a polyno-
mial in r of rank m−1, op=0

m−1 Fm,pr
p, so that

f m
slowsrd =

e−kDr

r
o
p=0

m−1

Fm,pr
p. sB6d

The leading termFm,m−1r
m−1 expf−kDrg in the residue(B5)

arises from thesm−1dth derivativeof expfikrg. Relation(B4)
and comparison of Eqs.(B2) and (B5) imply that

Fm,m−1 =
1

sm− 1d!
F− 2p

ĪsikDd
kD

Gm−1

F1,0. sB7d

The large-distance behaviorf assrd of fsrd is the sum of
the slowest exponential tails of all graphsfm:

f assrd = o
m=1

+`

f m
slowsrd. sB8d

It reads

f assrd =
e−kDr

r
o
p=0

+`

r p o
m=p+1

+`

Fm,p, sB9d

and the large-distance behaviorhaa8
B as of haa8

B takes the form
(90).

We now turn to« expansions of the previous slowest tails.

The « expansion ofĪskd, written askD
2 times a function of

k/kD [see Eq.(83)], generates an« expansion forfm through
Eqs.(B1) and (B4). We recall thatf1skd is the generic nota-
tion for the Fourier transform of the graphs with only one

bondFcc in Figs. 1–3. Since the« expansion ofĪskd starts at
order « [see Eq.(83)], the « expansion off1skd begins at
order «n0 with n0=0 if f =hccB, n0=1 if f =hc−B or f =h−cB,
andn0=2 if f =h−−B. For the same reason, the« expansion of
fm starts at the order«n0+m−1 and so does the« expansion of
the coefficientFm,p of r p in Eq. (B6):

Fm,p = «n0 o
q=m−1

+`

Fm,p
sn0+qd«q. sB10d

As a consequence, the large-distance tailf assrd of fsrd de-
fined in Eq.(B8) has an« expansion of the form

f assrd =
e−kDr

r
«n0o

p=0

+`

r po
q=p

+`

ap
sn0+qd«q

=
e−kDr

r
«n0o

q=0

+`

«qo
p=0

q

ap
sn0+qdr p, sB11d

with ap
sn0+qd=om=p+1

q+1 Fm,p
sn0+qd, and the« expansion ofhaa8

B assrd
has the structure(91). In Eq. (B11) the coefficientaq

sn0+qd of
«n0+qr q has a simple expression

aq
sn0+qd = Fq+1,q

sn0+qd. sB12d

The leading tail at order«n0+q in the « expansion off as is
proportional tor q expf−kDrg / r. It comes from the leadingr q

term in the slowest tailf q+1
slowsrd of the graph withq+1 bonds

calculated at its lowest order in«—namely,«n0+q.
The sumf as*srd of the leading tails at every order in« in

the « expansion off as reads

f aspsrd ;
e−kDr

r
«n0o

q=0

+`

aq
sn0+qds«rdq. sB13d

It can be calculated explicitly by virtue of Eq.(B12), because

Fq+1,q
sn0+qd is given by Eq. (B7), where Īskd is replaced by

Ī s1dskd, while F1,0 is replaced by the first term in its«
expansion—namely,F1,0

sn0d. We get
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«n0+qFq+1,q
sn0+qd =

1

q!
F− 2p

Ī s1dsikDd
kD

Gq

«n0F1,0
sn0d. sB14d

Equation(B14) implies that the coefficient ofr q in the defi-
nition (B13) of f aspsrd is indeed such thatf aspsrd coincides
with the series of an exponential:

f aspsrd =
1

r
e−skD+dkB

* dr«n0F1,0
sn0d with dkB

* = 2p
Ī s1dsikDd

kD
.

sB15d

According to Eq.(85), dkB
* coincides with the correction of

order« in kB, dkB
* =dkB

s1d. By comparison with Eq.(B3), the
relation (B15) can be rewritten as

f aspsrd = e−dkB
s1dr f 1

assn0dsrd, sB16d

where f 1
assn0d= f 1

slowsn0d is proportional to expf−kDrg / r. In
other words, the sumf aspsrd of the leading tails at every
order in « in the « expansion of f assrd around its
expf−kDrg / r behavior in the vanishing-« limit is equal to
expf−dkB

s1drg times the large-distance behavior of the graph
f1 with only one bondFcc calculated at the first order«n0.
When f =hccB, n0=0 and f 1

assn0d coincides with the diagram

P̃a=F cc shown in Fig. 7. Whenf =hc−B or h−cB, n0=1 and

f 1
assn0d is the expf−kDrg / r tail of diagramP̃b or P̃b* , respec-

tively (see Fig. 8), the amplitude of which is of order« with
respect to that ofFcc. When f =h−−B, n0=2 and f 1

assn0d is the
expf−kDrg / r tail of the diagram built with s1/2d
3fF ccg2pF ccps1/2dfFccg2, the amplitude of which is of order
«2 with respect to that ofFcc.

APPENDIX C

In the present appendix, we consider the limitb̃!1 at
fixed be2/ sesolvbd and we calculate the explicit values ofCf

s1d

and Ḡf
exps1dsx̃d [see definition(126)] up to terms of order«

times lnb̃ plus a function ofbe2/ sesolvbd. According to Eqs.
(127), (128), and (130), the values are determined from
H+sx̃,q2=0d and from its derivative with respect tox̃ at point

x̃= b̃.
First, we calculateH+s1dsx̃,q2=0d. According to Eq.(132),

at first order in«, H+s1d=−T +f1gus1d. In the following, the
definition (131) of T +f1g is rewritten forq2=0, thanks to an
integration by parts, as

T +f1gsx̃;q2 = 0d = Ksb̃d − Ksx̃d, sC1d

with

Ksx̃d =
1

2S2
E

x̃

+`

duf1 − e−2su−x̃dgo
a

ra
BZa

2Frasu/kDd
ra

B − 1G .

sC2d

With these definitions,

lim
x̃→+`

H+s1dsx̃,q2 = 0d = − Ks1dsb̃d, sC3d

and Eq.(128) is rewritten as

Ḡf
exps1dsx̃d = Ks1dsx̃d. sC4d

From now on, we consider the regimeb̃!1 at fixed
be2/ sesolvbd. Ks1dsx̃d is determined from the density profiles
up to order« given in Eq.(133). At leading order in the limit

whereb̃ vanishes, by virtue of Eqs.(138) and (139),

− Za
2«L̄sx̃;b̃d − ZabeFs1dSx;kD,b̃,

be2

esolvb
D = «Rasx̃d + Os«b̃d,

sC5d

whereRasx̃d is a linear combination of functions ofx̃, where

one coefficient involves lnb̃ plus a function ofbe2/ sesolvbd
in such a way that the limit of this sum is finite ifDelø0 and

b̃=0. HereOs«b̃d is a short notation for terms of order«b̃.
Then, the expression of the density profiles at order« can be

rewritten at leading order inb̃ as

rasxd
ra

B − 1 =HexpF− Za
2 be2

esolv
Vim

B scsxdG − 1J + «Rasx̃d

+ HexpF− Za
2 be2

esolv
Vim

B scsxdG − 1J
3«Rasx̃d + Os«b̃,«2d, sC6d

whereOs«2d stands both for terms of orders written in Eq.
(64) with G~«2/3 [as in Eq.(133)], and for terms of order«2

times a possible sum of a lnb̃ term and a function of
sbe2/esolvd, which is similar to the coefficient inRasx̃d [see
the comment after Eq.(C5)]. «Rasx̃d is a bounded integrable
function of only x̃=kDx, while sbe2/esolvdVim

B scsxd is a func-
tion of both x/ sbe2/esolvd and kDx. As already noticed in
Sec. 3.3 of Ref. [13], an integral where
hexpf−Za

2sbe2/esolvdVim
B scsxdg−1j is multiplied by « times a

bounded integrable function ofx̃ is of order«2 times a func-

tion of b̃ and be2/ sesolvbd, which has a structure similar to
Rasx̃d in Eq. (C6). Thus, according to Eqs.(C2) and(C6), the
expression ofKsx̃d at order«, Ks1dsx̃d, can be written at lead-

ing order inb̃ as the sum of only two contributions

Ks1dsx̃d = Kim
s1dsx̃d + «KRsx̃d + Os«b̃d, sC7d

where Kimsx̃d and KRsx̃d are defined as Ksx̃d by
replacing frasu/kDd /ra

Bg−1 in Eq. (C2) by
hexpf−Za

2sbe2/esolvdVim
B scsu/kDdg−1j andRasud, respectively.

Rasud defined in Eq.(C5) is given by the explicit expressions
(138) and(139). KRsx̃d is calculated by reversing the order of
the integrationsedu from the definition ofKR andedt from

the expressions ofL̄ andFs1d in Rasu/kDd. Eventually,
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KRsx̃d = KL̄sx̃d + KM̄sx̃d + KExpsx̃d + KS−
sx̃d, sC8d

where the four contributions arising from the terms in the

density profiles involving eitherL̄sxd, M̄sxd, exps−x̃d, or S−

are written in Eqs.(147b)–(147e), respectively, by virtue of
Eq. (C4).

Now we show that

Kim
s1dsx̃d = Kim

linsx̃d + Os«b̃d, sC9d

whereKim
linsx̃d is deduced fromKimsx̃d, defined after Eq.(C7),

by linearizing the exponential that contains the bulk-screened
self-image interaction Za

2se2/esolvdVim
B sc. Indeed, Kimsx̃d

−Kim
linsx̃d=Qsx̃d with

Qsx̃d ;
1

2S2
E

x̃

+`

duf1 − e−2su−x̃dgo
a

ra
BZa

2FexpSDel

2
Za

2 «

u
e−2uD

− 1 −
Del

2
Za

2 «

u
e−2uG . sC10d

Since the functions in the square brackets are positive and

1−expf−2su− x̃dgø1−expf−2su− b̃dg for x̃ù b̃,

0 ø Qsx̃d ø Qsb̃d = QSb̃,«;
be2

esolvb
D . sC11d

The double expansion ofQ(b̃,« ;be2/ sesolvbd) in powers of«

and b̃ at fixed be2/ sesolvbd can be calculated thanks to the
following formula (already used in Ref.[12]). We set«a

;Za
2« /2. The functionf in the integrand of Eq.(C10) is a

function ofu that depends on«a as if f were a function of the
two independent variablesu andu1=u/«a. We write it as

fSu,
u

«a
D = gs«au1,u1d. sC12d

Since b̃!1, the integrale
b̃

+`
can be split into the sum of

integralse
b̃

l̃
ande

l̃

+`
with b̃, l̃ and«a! l̃ !1. Then,

Exp
«a→0

FE
b̃

+`

du fSu,
u

«a
DG

= Exp
sl̃/«ad→+`

s«aE
b̃/«a

l̃/«a
du1 Exp

«a→0
fgs«au1,u1dgd

+ Exp
l̃→0
HE

l̃

+`

duExp
«a→0

F fSu,
u

«a
DGJ , sC13d

where Expd→0 denotes and expansion. The identity holds,

because whenu1, l̃ /«a then«au1!1, and whenu. l̃, then
s«a /ud!1. When Eq.(C13) is applied to the calculation of

Q(b̃,« ;be2/ sesolvbd), the second integral in Eq.(C13) gives a

term of order«a
2 ~«2, while Exp«a→0h1−expf−2s«au1− b̃gj

behaves as −2b̃, so that the first integral provides a contribu-

tion which starts at order«b̃; more precisely,

QSb̃,«;
be2

esolvb
D = «b̃

Del

2

oa
ra

BZa
4ga

S2
+ Os«2d, sC14d

wherega has been defined in Eqs.(141)–(145), andOs«2d is
equal to«2 times a function with a structure similar to that of
Rasxd in Eq. (C5). The result(C14) combined with inequali-
ties (C11) leads to Eq.(C9). Eventually Eq.(C7) can be
written as

Ks1dsx̃d ; Kim
linsx̃d + «KRsx̃d + Os«b̃d. sC15d

KRsx̃d is given in Eq.(C8) and, according to its definition,

Kim
linsx̃d = «

Del

4

S4

S2
fe2x̃Eis− 4x̃d − Eis− 2x̃dg, sC16d

where Eisud is the exponential-integral function defined in
Eq. (144).

The derivative]H+sx̃,q2=0d /]x̃ at first order in« must be
performed more carefully. The reason that leads toH+s1d=
−T +s1df1g also implies that

U ] H+

] x̃
Us1d

= UdK

dx̃
Us1d

sC17d

and, similarly to Eq.(C7),

UdK

dx̃
Us1d

= UdKim

dx̃
Us1d

+ «
dKR

dx̃
+ Os«b̃d. sC18d

The decomposition(C13) leads to

UdKim

dx̃
U

x̃=b̃

s1d

=
Del

2
«Hog

rg
BZg

4 gg

S2
−

S4

S2
fC + lns4b̃dgJ .

sC19d

We notice that

UdKim

dx̃
Us1d

Þ
dKim

s1d

dx̃
. sC20d

The reason is that, thoughKim
s1d is only a function ofx̃, Kim

s2d

involves a contribution that is equal to«2 times a function of
the two variablesx̃ and x̃/«, and the derivative of the latter
contribution with respect to the second argumentx̃/« is of
order«. The existence of such a contribution inKim

s2d is due to
the fact that the functionZa

2sbe2/esolvdVim
B scsx;kDd in the ex-

pression(134) of the density profile varies both over the
Bjerrum lengthbe2/esolv and over the screening lengthjD.
(This structure arises directly when the equation obeyed by
H+ is solved by a multiscale expansion method.)

APPENDIX D

In the present appendix we consider the large-x behavior
Da

c assxd of the dipoleDa
csxd that appears in the large-y tail

Da
csxdDa8

c sx8d /y3 of haa8
cc . Calculations are not as straightfor-

ward as forhaa8
ccB in the bulk, and we calculate only the sum

Da
c as*sxd of the leading large-x terms at every order«q in the
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« expansion of Da
c assxd around its infinite-dilution and

vanishing-coupling limitDa
c ass0dsxd. According to Eq.(152),

Da
csxd ;

e
Îesolv

ZafD̄fsxd + C̄c−sxdg. sD1d

After insertion of the graphic representation(52) of hc− in the
definition (151) of C̄c−sxd, the latter can be written as

C̄c−sxd = o
m=1

+`

Jmsxd, sD2d

whereJmsxd is the contribution toC̄c−sxd from the graph in
hag9

c− with m bondsFcc (see Fig. 2).
The graph withm bondsFcc in hag9

c− also containsm bonds
I. Therefore, according to the scaling analysis of
Sec. III B, the « expansion ofJmsxd starts at order«m,
Jmsxd=oq=m

+` Jm
sqdsxd, whereJm

sqdsxd denotes the term of order
«q. Therefore, the leading tail at order«q in the large-x

behaviorC̄c−assxd of C̄c−sxd can arise only from the leading
tails of theJmsxd’s with møq. Though we are not able to
derive the leading tail ofJmsxd systematically, we expect, by
analogy with theFm’s in the bulk case, that the leading tail of
Jmsxd has the samex dependence as the leading tail of the
first termJm

smdsxd in the« expansion ofJmsxd. As shown here-
fafter, the leading tailJm

smd assxd of Jm
smdsxd is proportional to

«msx̃− b̃dm expf−sx̃− b̃dg. As a consequence, the leading tail at

order«q in the large-x behaviorC̄c−assxd of C̄c−sxd coincides

with the leading tailJq
sqd assxd of Jq

sqdsxd, and the sumC̄c−aspsxd
of the leading tails at every order«q in C̄c−assxd is C̄c−aspsxd
=oq=1

+` Jq
sqd assxd. Similarly, for Da

csxd defined in Eq.(D1),

Da
c aspsxd =

e
Îesolv

ZaFD̄f
s0dsxd + o

q=1

+`

Jq
sqd assxdG . sD3d

The termJq
sqdsxd of order«q in the « expansion ofJqsxd is

obtained by replacing every bondFcc by its zeroth-order ex-
pressionFccs0d, every I by its lowest-order valuefFccs0dg2/2,
and every weightrasxnd by its bulk valuera

B. Inspection of
Jq

sqdsxd for small values ofq shows that only the partfsing
s0d

=fD of fs0d does contribute to the leading tailJq
sqd assxd. Let

us denote byJ̃q
sqdsxd the corresponding part inJq

sqdsxd. For the
sake of simplicity, we relabel point pairshp,p8j
;hsr p,gpd ,sr p8 ,gp8dj, with p=1, . . . ,q, xq=xc8, andxq8=x9, in
the opposite sense and we setup; x̃q−sp−1d andup8; x̃q−sp−1d8 .
By using Eqs.(7) and (122) and the change of variablet
=2Î1+q2, we get

J̃sqd
q sxd = −

1

kD
Î2eW

esolv
F− «

1

4
SS3

S2
D2GqE

2

+` dtq
tq
E

b̃

+`

duq e−ux̃−uqu

3E
b̃

+`

duq8 e−tquuq−uq8u
¯ E

2

+` dt1
t1
E

b̃

+`

du1 e−uu28−u1u

3E
b̃

+`

du18 e−t1uu1−u18ue−su18−b̃d. sD4d

The next steps of the calculations involve the following for-
mulas:

Isu1d ; E
b̃

+`

du18 e−t1uu1−u18u e−su18−b̃d

=
2t1

t1
2 − 1

e−su1−b̃d −
1

t1 − 1
e−t1su1−b̃d sD5d

and

E
b̃

+`

du1 e−uu28−u1uIsu1d =
2t1

t1
2 − 1

su28 − b̃de−su28−b̃d + R0su28 − b̃d,

sD6d

whereRpsud denotes a function whose slowest exponential
tail is equal to exps−ud times a polynomial of rankp in the
variablex. More generally, we find

E
b̃

+`

dup8 e−tpuup−up8usup8 − b̃dp−1e−sup8−b̃d

=
2tp

tp
2 − 1

sup − b̃dp−1e−sup−b̃d + Rp−2sup − b̃d sD7d

and

E
b̃

+`

dup e−uup+18 −upusup − b̃dp−1e−sup−b̃d

=
1

p
sup+18 − b̃dpe−sup+18 −b̃d + Rp−1sup+18 − b̃d. sD8d

Eventually, the multiple integral in Eq.(D4) is equal to

SE
2

+`

dt
2

t2 − 1Dqsx̃ − b̃dq

q!
e−sx̃−b̃d + Rq−1sx̃ − b̃d, sD9d

wheree2
+`dt 2/st2−1d=ln 3 and

Jq
sqd assxd = −

1

kD
Î2eW

esolv
F− «

ln 3

4
SS3

S2
D2Gqsx̃ − b̃dq

q!
e−sx̃−b̃d.

sD10d

Therefore,Da
c aspsxd, given by Eq.(D3) with D̄f

s0dsxd written
in Eq. (7), proves to be the series of an exponential whose

argument is proportional to«sx̃− b̃d:

Da
c aspsxd = −

e
Îesolv

ZaÎ2eW

esolv

e−skD+dk* dsx−bd

kD
, sD11d

with
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dk*

kD
= «

ln 3

4
SS3

S2
D2

. sD12d

By virtue of Eq.(86), dk* coincides with the first-order cor-
rection dkB

s1d to the screening length in the bulk. We notice
that Eq.(D11) can be rewritten as

Da
c as*sxd = Da

s0dsxde−dk* sx−bd. sD13d

Equation(D13) corresponds to the relation(94) in the bulk
case.
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